
PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the FIESTA-IoT Consortium.

Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any
third party, in whole or in parts, except with prior written consent of the consortium.

HORIZONS 2020 PROGRAMME

Research and Innovation Action – FIRE Initiative
Call Identifier: H2020–ICT–2014–1

Project Number: 643943
Project Acronym: FIESTA-IoT

Project Title: Federated Interoperable Semantic IoT/cloud
Testbeds and Applications

D5.4 - Best Practices for Experiments
Design and Conduction

Document Id: FIESTA-IoT-D54-15042018-Draft

File Name: FIESTA-IoT-D54-15042018-Draft.pdf

Document reference: Deliverable 5.4
Version: Draft
Editor: Mengxuan Zhao
Organisation: EGM
Date: 15/04/2018
Document type: Deliverable
Dissemination level: PU

Copyright ã 2018 FIESTA-IoT Consortium: National University of Ireland Galway - NUIG / Coordinator
(Ireland), University of Southampton IT Innovation - ITINNOV (United Kingdom), Institut National
Recherche en Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United
Kingdom), Unparallel Innovation, Lda - UNPARALLEL (Portugal), Easy Global Market - EGM (France),
NEC Europe Ltd. NEC (United Kingdom), University of Cantabria UNICAN (Spain), Research and
Education Laboratory in Information Technologies - Athens Information Technology - AIT (Greece),
Sociedad para el desarrollo de Cantabria – SODERCAN (Spain), Fraunhofer Institute for Open
Communications Systems – FOKUS (Germany), Ayuntamiento de Santander – SDR (Spain), Korea
Electronics Technology Institute KETI, (Korea).

Ref. Ares(2018)3335598 - 23/06/2018

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments
V01 Mengxuan Zhao EGM 2018/01/15 ToC definition

 Rachit Agarwal Inria 2018/02/01 Section: Handbook for
Experimenters, Best Practices

 David Gomez UC 2018/02/01 Section: Best Practices

 Flavio Cirillo NEC 2018/02/13 Usage of FAQs for best practices
creation (Section 3)

 Luis Sanchez UC 2018/02/21 Contributions to Section 3 and
Section 4

 Mengxuan Zhao EGM 2018/02/27
Contribution to Lessons Learnt,

Executive summary and
Conclusion

 Elias Tragos NUIG-Insight 2018/03/14 Comments, fixes, improvements

 Luis Sanchez UC 2018/03/21 Contribution to Best Practices for
Testbeds

V02 Mengxuan Zhao EGM 2018/03/28 For internal review

V03 Tiago Teixeira Unparallel 2018/04/03 QR

 Ronald Steinke FOKUS 2018/04/05 QR

V04
Mengxuan Zhao

Luis Sanchez
Rachit Agarwal

EGM
UC
Inria

2018/04/06 Version for submission

V05 Martin Serrano NUIG-Insight 2018/04/15 Circulated for Approval

Draft Martin Serrano NUIG-Insight 2018/04/15 EC Submitted

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 2

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY .. 4

2 HANDBOOK FOR EXPERIMENTERS ... 4

3 LESSONS LEARNT FROM EXPERIMENT DEVELOPMENT AND DEPLOYMENT 5

3.1 Creating and managing an experiment when FIESTA-IoT tools are used. 5
3.1.1 Periodicity .. 5
3.1.2 Experiment managing .. 5
3.1.3 Historical data retrieving .. 5

3.2 Creating the SPARQL .. 5
3.3 Security system ... 7

3.3.1 Authorization ... 7
3.3.2 Authentication .. 7
3.3.3 Session ... 8
3.3.4 Resources Access ... 8
3.3.5 Accounts and roles .. 8

3.4 Data Access .. 9
3.5 FIESTA-IoT tools ... 11

3.5.1 AaaS (Annotator as a Service) ... 11
3.5.2 EDR (Experiment Data Receiver) .. 12
3.5.3 Postman Collection .. 12
3.5.4 Ticketing System ... 12
3.5.5 TPI Configuration View .. 12

3.6 Testbed integration .. 13
4 BEST PRACTICES FOR EXPERIMENTS AND TESTBEDS INTEGRATION ON FIESTA-IOT
PLATFORM.. 14

4.1 Best practices for FIESTA-IoT experimenters... 15
4.1.1 Creating the FEDSpec ... 15
4.1.2 Writing efficient Queries ... 17
4.1.3 Using added-value tools available .. 19

4.2 Best practices for integrating a testbed in FIESTA-IoT ... 19
4.2.1 Aligning the internal data model to the FIESTA-IoT Ontology 20
4.2.2 Annotating and sending data to to the FIESTA-IoT Platform 20
4.2.3 Getting FIESTA-IoT Certified.. 20
4.2.4 Registering your testbed and resources ... 20
4.2.5 Configure your TPS for sending observation to FIESTA-IoT Platform 21

5 CONCLUSION.. 22
6 BIBLIOGRAPHY .. 22

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 3

TERMS AND ACRONYMS

AaaS Annotator as a Service
API Application Program Interface
DSL Domain Specific Language
FAQ Frequently asked questions
EEE Experiment Execution Engine

FEDSpec FIESTA-IoT Experiment Description
FIRE Future Internet Research and Experimentation

FISMO FIESTA-IoT Service Model Object
HTTP Hypertext Transfer Protocol

IRI Internationalized Resource Identifier
OC Open Call

RDF Resource Description Framework
SPARQL SPARQL Protocol and RDF Query Language

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 4

1 EXECUTIVE SUMMARY

This deliverable summarizes the effort that the FIESTA-IoT consortium have made to
help experimenters to efficiently get started with the semantic platform and design,
deploy and execute their innovative experiments upon the platform. A rich handbook
is created to describe every detail of the platform, and plenty of examples are
provided in the handbook to complete the development guide.
The in-house experiments have been designed, developed and deployed on the
FIESTA-IoT platform in parallel with the platform development, thus valuable
feedback and lessons learnt have been collected and made available in the
handbook. During the Open Call Experiment process, thanks to the interaction with
external experimenters, we get extra feedback from the perspective of the external.
These feedback and lessons learnt are communicated to the FIESTA-IoT
experimenter community using different channels, such as the handbook, the FAQ
section on the web page, the workshop tutorial materials, etc. The current deliverable
gather these informations from various channels to present them in a single
document. The feedback and lessons learnt consist of several topics, including
thesteps of experiment design and deployment to interact with the FIESTA-IoT
platform and the usage of the FIESTA-IoT tools. Best practices of using the FIESTA-
IoT platform for experiments have been created from these feedback and lessons
learnt.

2 HANDBOOK FOR EXPERIMENTERS

FIESTA-IoT created a guide (handbook) (FIESTA-IoT, 2018)] for experimenters to
showcase the use of the platform correctly. The main idea behind the handbook is to
provide a holistic vision of all the features that FIESTA-IoT platform currently
supports. Following a “Getting Started”-like approach, the aim of the handbook is to
guide external users (experimenters with respect to this deliverable) to correctly
integrate their experiment with the FIESTA-IoT platform. For experimenters, the
handbook clearly describes different ways how experimenters can interact with the
FIESTA-IoT platform. It describes clearly the DSL (Domain Specific Language)
experimenters need to follow to create their experiment along with examples. The
handbook provides steps to register a new experiment, execute it based on the
comfortability level of experimenters (novice or advanced) and retrieve the resultsets.
The handbook list APIs available for advanced experimenters so that experimenters
can create their own Experiment Execution Engine.
One of the most important part of an experiment is the SPARQL query. The
handbook provides recommendations on optimised queries that should be sent to the
FIESTA-IoT platform without overloading it. These best practices/recommendations
are mentioned in section 4. On top of these recommendations, the handbook lists
various SPARQL queries that an experimenter can use to first understand the data
stored in the FIESTA-IoT system and then use the recommendations to create
experiment specific queries.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 5

3 LESSONS LEARNT FROM EXPERIMENT DEVELOPMENT AND
DEPLOYMENT

This section summarizes the lessons learnt from experiment development and
deployment of the in-house and the open-call experiments.

3.1 Creating and managing an experiment when FIESTA-IoT tools
are used.

3.1.1 Periodicity

• If the execution of the Service defined within the experiment is producing no data,
it is very important to check the consistency of fed:startTime, fed:Periodicity and
fed:stopTime;

• Some times there might be misunderstanding of the fed:Periodicity field. The
fed:Periodicity is the time period that should pass between two consecutive
execution of the same service defined within the experiment.

• FIESTA-IoT does not support a feature to specify an exact number of execution of
the SPARQL but it is possible to have the same result by correctly tuning the
fed:startTime, fed:Periodicity and fed:stopTime parameters

3.1.2 Experiment managing

• Before making any update to a service in an experiment it is necessary to delete
the scheduled services through the Management console UI. Once deleted, the
experiment can be updated according to the needs and the services can be
rescheduled on the execution engine.

3.1.3 Historical data retrieving

• The initial design of the experiment managing specification aims at helping
experimenters to interact with the available sensors and get the latest data
periodically. For the experiments that need only historical data for massive data
analytics, the FIESTA experiment management model turns to be heavy and
unnecessary, while it requires some learning effort from the experimenter. From
the feedback of one Open-Call experiment, in this case, it is more efficient to
directly interact with the IoT-registry API which accepts the SPARQL queries
without any extra upper layer complexity (an example is given in 3.4).

3.2 Creating the SPARQL

• The SPARQL is one of the critical points of an experiment. It is very common to be
confused between classes and instance of an ontology. For instance the following
example is wrong (check the highlighted text)

Prefix ssn: http://purl.oclc.org/NET/ssnx/ssn#
Prefix dul: http://www.loa.istc.cnr.it/ontologies/DUL.owl#
Prefix geo: http://www.w3.org/2003/01/geo/wgs84_pos#
Prefix m3-lite: http://purl.org/iot/vocab/m3-lite#

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 6

Prefix xsd: http://www.w3.org/2001/XMLSchema#
Prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
select distinct ?lat ?long ?dataValue
where {
 ?observ a ssn:Observation.
 ?observ ssn:observedBy m3-lite:SoilHumiditySensor.
 ?observ ssn:observedProperty m3-lite:SoilHumidity.
 ?observ geo:location ?point.
 ?point geo:lat ?lat.
 ?point geo:long ?long.
 ?observ ssn:observationResult ?output.

?output ssn:hasValue ?value.
 ?value dul:hasDataValue ?dataValue.

}

An observation is “observedBy” an instance of sensor, not by a class (m3-
lite:SoilHumiditySensor”. The property should also be an instance of class
“m3:soilHumidity”. A correct example would be:

Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select distinct ?lat ?long ?dataValue
where {
 ?observ a ssn:Observation.
 ?observ ssn:observedBy ?sensorID.
 ?sensorID a m3-lite:SoilHumiditySensor.
 ?observ ssn:observedProperty ?qkr.
 ?qkr a m3-lite:SoilHumidity.
 ?observ geo:location ?point.
 ?point geo:lat ?lat.
 ?point geo:long ?long.
 ?observ ssn:observationResult ?output.
 ?output ssn:hasValue ?value.
 ?value dul:hasDataValue ?dataValue.
}

• In order to have a optimal SPARQL and minimize the checks the triple store needs

to do, it is often possible to omit the type check of the sensor. In the example, we
know in advance that all sensors of type “m3-lite:SoilHumiditySensor” have the
quantityKind “m3:soilHumidity”, so we can omit the sensor type check:

Prefix ssn: http://purl.oclc.org/NET/ssnx/ssn#
Prefix dul: http://www.loa.istc.cnr.it/ontologies/DUL.owl#
Prefix geo: http://www.w3.org/2003/01/geo/wgs84_pos#
Prefix m3-lite: http://purl.org/iot/vocab/m3-lite#
Prefix xsd: http://www.w3.org/2001/XMLSchema#
Prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
select distinct ?lat ?long ?dataValue
where {
 ?observ a ssn:Observation.
 ?observ ssn:observedProperty ?qkr.
 ?qkr a m3-lite:SoilHumidity.
 ?observ geo:location ?point.
 ?point geo:lat ?lat.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 7

 ?point geo:long ?long.
 ?observ ssn:observationResult ?output.

?output ssn:hasValue ?value.
 ?value dul:hasDataValue ?dataValue.

}

• It is worth to note that if a limit of number of observations to be returned within the
SPARQL of the FEDSpec is specified, and the SPARQL is doing an historical
query with the time interval inchanged, then the resultset might be always the
same.

3.3 Security system

3.3.1 Authorization

• There are many reasons for which a call to an API resource results to a “401
Unauthorized”.
o A first reason might be that the token is not valid. In order to check its validity,

try the following:
curl --verbose --request POST --header "Content-Type:
application/json" --header "iplanetDirectoryPro: <TOKEN>"
https://platform.fiesta-
iot.eu/openam/json/users?_action=idFromSession

and check whether an HTTP 200 OK is returned.

o Another reason might be that the requested resource does not allow certain
HTTP method. Most of the resources exposed by the API allows only the GET
method, used for retrieving data. One exception is the
“queries/execute/{resource/observations/global}” resources, to which
it is meant to be sent a SPARQL query. Check the training platform for more
information on the API1

o A “401 Unauthorized” might be returned also when a brand new token is
provided. This might be due to cookies, for example Postman makes use of the
cookies and it might happen that an old and not valid cookie is used for IoT-
Registry call even if a new token has been provided within the header. In this
case it is better to remove the cookies2

3.3.2 Authentication

• The FIESTA-IoT authentication API does not allow cross-origin requests (CORS)
from browser based scripts, and javascript technologies like Ajax will then not
comply with this security policy. It is better (in the first instance) to use an
alternative method to authenticate and get a token via the API, i.e. a method not
running in the browser. Another approach is to develop a proxy. That is a service
that runs the API calls and the browser client then interacts with this service.

1 http://moodle.fiesta-iot.eu/mod/book/view.php?id=104&chapterid=42
2 https://www.getpostman.com/docs/postman/sending_api_requests/cookies.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 8

3.3.3 Session

• To prevent exhaustion of server resources, users are only allowed a fixed number
of sessions. Once over this limit is reached, a previous session is selected and
invalidated. When handling with multiple sessions from the same account, each
logged-in session should be logged out after completion of use.

• Removing the token with a logout action is not mandatory but highly benefitial. It is
helpful to make the logout request if the token will not be used for a period of time.
The call that to be executed is as follows:

POST /openam/json/sessions/?_action=logout HTTP/1.1

Host: platform.fiesta-iot.eu
Content-Type: application/json
iPlanetDirectoryPro: AQIC5wM2LY4SfcwEw_Jg.........

{}

The body of the POST request can be an empty JSON document and you only
have to include the header with the token you want to remove.

3.3.4 Resources Access

• In order to protect the system for malignous misusage, all the resources within
FIESTA-IoT platform are protected by the authentication procedure. It is not
possible to do any HTTP call to any of the resources, without executing the
authentication procedure.

• It is not possible to access testbeds resource with an experiment account, only a
testbed administrator role can access to https://platform.fiesta-iot.eu/iot-
registry/api/testbeds resources

• When accessing the portal a blank page might appear. This is an authentication
problem. First thing is to be sure to have granted some role within the FIESTA-IoT
platform. If this condition is satisfied, then often the problem resides on an old
invalid cookie. It is worth to try to clear cookies from the browser.

• Authentication is a key element of the whole FIESTA-IoT platform, thus any
request need to carry a valid authentication token. It is better to check the FIESTA-
IoT training material3 that contains complete information about the FIESTA-IoT
Platform security framework. Note that before being able to access any of the
FIESTA-IoT Platform services (e.g. AaaS) it is mandatory to pass through
authentication and authorization.

3.3.5 Accounts and roles

• The “testbed admin” role is not granted if certain milestones are not passed, such
as being able to correctly annotate observations and resource descriptions, as well

3 http://moodle.fiesta-iot.eu/mod/book/view.php?id=106

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 9

as to have interoperable TPS. Checking the FIESTA-IoT training tool4 for more
information might be handful.

• The FIESTA-IoT platform and the FIESTA-IoT ticketing system are using two
disjoint Identity Manager servers. For that reason in order to use the ticket system
it is necessary to create a new account on it (the same username and password
can be used for your convenience). The advantage to use the ticketing system is
to more easily track the status of the issues.

3.4 Data Access

• Sensors produce data on their own schedule. It is not possible to act on that
parameter (i.e. controlling the time between two consecutive observations from a
sensor).

• An example for making a SPARQL to the IoT-Registry can be found below (the
{{iPlanetDirectoryPro}} needs to be set accordingly).

curl -X POST \
http://localhost:8080/iot-registry/api/queries/execute/global \
-H 'accept: application/json' \
-H 'cache-control: no-cache' \
-H 'content-type: text/plain' \
-H 'iplanetdirectorypro: {{iPlanetDirectoryPro}}' \
-d 'Prefix ssn: http://purl.oclc.org/NET/ssnx/ssn#
Prefix iotlite: http://purl.oclc.org/NET/UNIS/fiware/iot-lite#
Prefix dul: http://www.loa.istc.cnr.it/ontologies/DUL.owl#
Prefix geo: http://www.w3.org/2003/01/geo/wgs84_pos#
Prefix time: http://www.w3.org/2006/time#
Prefix m3-lite: http://purl.org/iot/vocab/m3-lite#
Prefix xsd: http://www.w3.org/2001/XMLSchema#
Prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

select ?lat ?long ?dataValue ?time ?sensorID
where {
 ?observ a ssn:Observation.
 ?observ ssn:observedBy ?sensorID.
 ?observ ssn:observedProperty ?qkr.
 ?qkr rdf:type m3-lite:AirTemperature.
 ?observ geo:location ?point.
 ?point geo:lat ?lat.
 ?point geo:long ?long.
 ?observ ssn:observationResult ?output.
 ?output ssn:hasValue ?value.
 ?value dul:hasDataValue ?dataValue.
 ?observ ssn:observationSamplingTime ?t.
 ?t time:inXSDDateTime ?time.

 FILTER (
 (xsd:double(?lat) >= "4.2E1"^^xsd:double)
 && (xsd:double(?lat) <= "4.8E1"^^xsd:double)
 && (xsd:double(?long) >= "-3.9E0"^^xsd:double)
 && (xsd:double(?long) <= "-3.6E0"^^xsd:double)
)
}

4 http://moodle.fiesta-iot.eu/mod/book/view.php?id=96&chapterid=93

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 10

order by desc(?time)
limit 10'

Other examples can be found on the FIESTA-IoT training platform5 and curl
command generated from the Postman tool6

• It is not possible to request data coming from a particular sensor by specifying the
sensor identifier valid within the domain of a specific deployment. This is due to
the fact that sensor identifiers are transformed into FIESTA-IoT namespace (the
process of transformation involves a hashing mechanism so the identifiers are not
human friendly). In general when an experimenter approaches FIESTA-IoT
Platform it should be made in a testbed-agnostic way. This is not looking, for
instance, for SmartSantander devices but for FIESTA-IoT devices (which includes
devices from various testbeds).
Discovery of sensors in the majority of the cases is based on their position or their
phenomena that they observe.

• Due to system overload, it is possible that the execution of SPARQL queries is
responded with a server error (i.e. 500 HTTP responose code). When developing
an experiment, it is important to take this into account and retry the query until it is
successfully answered.

• Some of the sensors and actuators available are exposed by services (typically
RESTful based services) which let the experimenter get the observations that they
have produced. When the nature of the experiment allows it, accessing data using
these services is always more efficient than executing a SPARQL query that would
provide the same information.

• New releases of the IoT-Registry have disabled (by default) the inference engine.
The reason behind this is that using the inference feature of the semantic engine
of the IoT-Registry by default makes all queries, even those that would not need it,
to take much longer (at least two or three orders of magnitude) making a typical
query which is now being resolved in some few seconds to take some minutes.
Nonetheless, there is a way to keep using this engine.

When invoking a service, this needs to be added ?inference=true as a query string in
the URL.

For the moment inference will remain disabled unless there is no other way to get the
requested information.

In this sense, the first thing that is necessary is to exactly know which is the
information to discover.

• In this respect, even if inference is not enabled, the queries can be adapted to get
the same result. The key idea is to use the Object Properties within the SPARQL.
For example, when interested in all the Sensing Devices the Object Properties
referred to this class can be leveraged. By adding into the SPARQL the following
statement ?sensor iot-lite:hasQuantityKind ?qk. it will find all the nodes in the
graph that has this object property. These nodes will be precisely all the sensing
devices. There are different solutions exploiting the same concept. For example:

?o a ssn:Observation.
?o ssn:observedBy ?sensor.

5 (http://moodle.fiesta-iot.eu/pluginfile.php/666/mod_folder/content/0/Material/Postman/OC1-TS-iot-
registry-api.json?forcedownload=1
6 https://www.getpostman.com/docs/postman/sending_api_requests/generate_code_snippets

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 11

?sensor iot-lite:hasQuantityKind ?qk.

A SPARQL with these statements will gather sensing devices that had produced
an observation (so not only registered sensors but active registered sensors).

3.5 FIESTA-IoT tools

3.5.1 AaaS (Annotator as a Service)

• The AaaS is a service provided by the FIESTA-IoT platform for easing the
annotation of your testbeds, resources and observations. Good documentation
can be found within the FIESTA-IoT training platform7

• In order to optimize the traffic with the AaaS, it is possible to send multiple
observations as an array, like following:

{
 "observations": [{
 "observed_by": "http://device01",
 "location": {
 "lat": 1.5,
 "lon": 1.2000000476837158
 },
 "quantity_kind": "qk1",
 "value": "value1",
 "format": "float",
 "unit": "uom",
 "timestamp": "2017-07-27T07:29:00.66Z"
 }, {
 "observed_by": "http://device02",
 "location": {
 "lat": 1.5,
 "lon": 1.2000000476837158
 },
 "quantity_kind": "qk2",
 "value": "value2",
 "format": "float",
 "unit": "uom",
 "timestamp": "2017-07-27T07:29:00.66Z"
 }]
}

• All the available output types (set with the accept header) for the basic AaaS are
available: application/ld+json; application/rdf+xml; application/n-triples;
application/n-quads; application/turtle; text/plain; text/csv; text/rdf+n3;
application/n3; text/n3; text/n-quads; text/nquads

It is good to note that for certain output types, some constraints are needed to be
followed, like application/rdf+xml requires to have the observed_by field set with a
valid IRI.If the values of a JSON request to the AaaS is containing some errors
(like typo) but all the field names are correct, the response from the AaaS might
still be rejected, with an error, by the testbed component. It is better to use the

7http://moodle.fiesta-iot.eu/pluginfile.php/672/mod_folder/content/0/Presentations/01-FIESTA-
TPS_and_AaaS.pdf?forcedownload=1

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 12

Ontology Validator in order to be sure that everything is in the correct form, also
the response from the AaaS.

• The timestamp is a required field and cannot be omitted within the RDF of the
observations and it cannot be omitted when requesting the AaaS for creating the
RDF.

• The attribute "type" is part of the description of the sensing devices (as "qk" or
"uom"). This attribute is not compulsory and if it is not included the sensor is
annotated as ssn:SensingDevice (i.e. the generic Class for the sensors).
This is perfectly correct, that's why letting the testbed providers decide whether or
not to go the extra mile and set this "type" attribute in order to make the annotated
resource description more specific.
When using the "type" attribute the correct class of the M3-Lite taxonomy needs to
be used. For example, for a sensor measuring the temperature of the water
"type":"WaterThermometer" should be used, similarly, for a sensor measuring
ReactivePower "type":"EnergyMeter" is the right one. In case there is not an
appropriate class in M3-Lite (note that it has to be subClass of SensingDevice),
simply communicate with the FIESTA-IoT team.

3.5.2 EDR (Experiment Data Receiver)

• The Experiment Data Receiver exposes only the “ExperimentServer/store/”
resource.

3.5.3 Postman Collection

• The collections are often using variables like {{path}} or {{iPlanetDirectoryPro}} that
need to be set. In this sense, the values can be directly hardcoded by replacing
them with appropriate value (i.e. {{path}} as https://platform.fiesta-iot.eu). But it is
handier to have a look at the Postman documentation8 where it is explained how
to use variables in collections and how to automate things. This is of great help for
automatically set the OpenAM Security Token in all your requests.

3.5.4 Ticketing System

• The FIESTA-IoT platform and the FIESTA-IoT ticketing system are using two
disjoint Identity Manager servers. For that reason in order to use the ticket system
it is necessary to create a new account on it (the same username and password
can be used for your convenience). The advantage to use the ticketing system is
to more easily track the status of the issues.

3.5.5 TPI Configuration View

• When a resource is scheduled it is removed from the available resource list of the
first tab. So if the resource is not visible it is worth to check the other tabs.

8 http://blog.getpostman.com/2014/02/20/using-variables-inside-postman-and-collection-runner/

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 13

3.6 Testbed integration

• As directly experienced, in order to not overload the system, there are a couple of
expedients for testbeds that have implemented the get-based TPS:
o As far as possible, do not set frequencies smaller than 5 minutes.
o In case of a long list of devices, try to split them in several schedules. If the

TPS takes too long to compile the response to the getLastObservations query,
the connection is timed-out by the platform. The timeout is set to 60 seconds.
Typically, the time that the TPS takes to answer the request is proportional to
the number of sensorIDs included in the request. Thus, it is better to avoid
including large number of sensors per schedule. The actual strategy used to
split the sensors in different schedules is left to the testbed providers (e.g. one
schedule per type of sensor) as they should select the way that ease the
management that they might have to do internally.

• A testing virtual machine, as playground, is available for easing the integration of
testbeds. The system is a mirror of the one that you will have on the production
machine so it should put you in the best position to, once gotten familiar with it,
make the definitive integration on the real system that FIESTA-IoT experimenters
are actually using. The playground will only be opened to testbed providers so that
there are no worries about messing things up and the system can easily be reset
without many collateral damages. All in all, the testbed providers need to simply go
to the playground area9 and start interacting with the system to train themselves
on the tasks and procedures defined to integrate a testbed in the FIESTA-IoT
Platform. In terms of security credentials, the same username and password can
be used since the playground is using the same user management system as the
production machine. Indeed, the security tokens to be used on playground.fiesta-
iot.eu have to be obtained from platform.fiesta-iot.eu.

• The taxonomy of the FIESTA-IoT ontology can be always expanded in order to
cover all the possible IoT testbeds. In order to do so we invite to contact us by
specifying, for each of the sensor you think not matching any of the already
available quantity kind, the following:

- sensor name
- sensor description
- subclass of
- Quantity Kind (QK)
- QK description
- subclass of

For example:
- sensor name : Oxidation Reduction Potential (ORP) Sensor
- sensor description: Measures the Water Oxidation Reduction Potential (ORP) is
the tendency of a chemical species to acquire electrons and thereby be reduced.
- subclass of: ssn:SensingDevice
- Quantity Kind (QK): Voltage
- QK description: An electromotive force or potential difference expressed in

9 https://playground.fiesta-iot.eu

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 14

Volts
- subclass of: Quantity Kind

• The FIESTA-IoT Platform works with stored data as linked data. The IRIs of the
device are their identifiers and then we have links among them which are
traversed to discover them. When registering devices it is mandatory that each
device has a different IRI. If a device is registered using the same IRIs of a
previously registered one, then when the registration is made, no new node is
actually registered in the linked graph which is the FIESTA-IoT Platform repository.
However, registering a device using the same IRI but indicating the
hasDeployment to a different testbed IRI causes the addition, not the replacement,
in the repository. The device will then “belong" to the two testbeds.

• When using the AaaS for annotating multiple observations, the TPS should not call
the AaaS for each of the observations retrieved from the internal testbe service.
The correct way for handling this on the TPS when receiving the
getLastObservations request is to iterate over the list of sensorIDs included in the
request, and for each of them obtain the observation from your internal testbed
service and store it on an array. When it finishes going from the first to the last in
the list, takes the resulting array and call the AaaS API for annotating the whole list
of observations. The result is then put in the response.
The output of the AaaS will result in a correct JSON-LD:
{ "@graph":[{observation from device1}, {observation from device2}, ...,
{observation from deviceN}],"@context":{}}

This will also minimize the calls to the AaaS API.

• If a sensor has not produced a new observation since the last time it was queried
(e.g. it is broken or polling frequency is faster than observation generation), then
the already provided observation should not be reported again. A different
behaviour might harm the production platform.

• Using a fixed template is not best approach since semantics are something more
than a fixed structure. Thus, the option of "annotating by placeholders" can
probably make the work but it might cause issues in the future/
The best is to use actual semantic libraries so that annotations can be modelled
directly from the ontology. An easier approach is to make usage of the AaaS.

• It is better to register and send observations into the playground by, at least, one
sensor from each of the types .Even if the larger the tests in the playground the
better since hidden problems will probably be discovered, typically it is not
necessary to register ALL resources (mostly if they are a really large number).

4 BEST PRACTICES FOR EXPERIMENTS AND TESTBEDS
INTEGRATION ON FIESTA-IOT PLATFORM

In this section we list best practices an experimenter needs to follow to perform
successful experimentation on FIESTA-IoT metacloud.
The best practices are based on the multi-channel feedbacks, lessons leanrt and
interactions with OC participants, which gives to the FIESTA-IoT technical team more
insight of the platform users’ perspective. These best practices mainly span the best
practices an experimenter need to follow to create the FEDSpec and write efficient
queries. Additionally, the key aspects that testbed providers should observe during
the integration of their testbeds are also described.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 15

4.1 Best practices for FIESTA-IoT experimenters

4.1.1 Creating the FEDSpec

To consolidate the previous section, we encourage the experimenters to follow the
best practices. These include:
• Please do not use the template/provided FEDSpec’s as it is. The provided

template is a generic template. We further encourage you to remove all #*# and
also the properties that are not used. For the properties you are using, change #*#
with the actual values you want to use. The data format of the values you provide
should be same as these reflected in the examples. Further, use logical values.
Please do not use Test, Blah Blah, etc, in the description and other places.

• Have userID specified in the FEDSpec. You should modify #USERID#. Your
FEDSpec will not be saved if #USERID# is different from the ACCESSTOKEN used.

• fed:startTime should be less than fed:stopTime. Ideally, the difference
between startTime and stopTime should not be 1 sec. If this is the case, this
will only allow the experiment to be executed once in the lifetime. If this is a
needed functionality we recommend to do so. However there is another option.
Instead of scheduling the experiment on the Execution Engine, experimenters can
use the Polling option available via the Management Console. To avail Polling
service, experimenters will first have to deploy the FEDSpec, but are not supposed
to “START” the execution of a particular FISMO. By not starting the execution, the
FISMO status remains “NOT YET SCHEDULED”.
If only one execution is not the needed functionality please be realistic in the
difference. Do not set #PERIODICITY# to 1 second for the queries. This will only
overload both our as well as your system, block the network without providing any
insight. As a best practice we recommend you to use periodicity of not less than
600.
EEE always queries the global graph. This means, from the set of time dependent
observation graphs available within FIESTA-IoT federation, the most recent
observation graph will be queried. Thus it is important to note that the
fed:startTime, fed:stopTime and fed:Periodicity are accordingly defined
and are within 6 hours time limit.

• If you use dynamic query parameters please use them as specified for the query,
i.e., using %%fromDateTime%%, %%toDateTime%%, %%geoLatitude%%,
and %%geoLongitude%%. For other cases, other parameters used in dynamic
query, use %%DA_NAME%%. Note that the DA_NAME correspond to the dynamic
attribute.

• Before writing the queries we strongly encourage you to have a look at the
documentation of the kind of data that is currently provided and what is the
semantic structure of it. We recommend you to write queries that would serve your
purpose and are efficient. Please DO NOT:

o Write queries that are irrelevant for your experiment. This will have overloading
effect on your Experiment.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 16

o Use overly complex queries for simple cases unless no other solution.
We would be happy to help you writing efficient queries. However, as an
experimenter we expect that you first write queries and we validate them.
Additionally do not use “Select * Where {?s ?p ?o.}” query, this goes against our
principles and shall be completely prohibited. More details on the best practices for
efficient querying is provided in the next section. Further, in case of specific
queries, if you have something with “PARAMETER”, we recommend you to use
\”PARAMETER\”. Note the \”. This is done to correctly parse the query when
invoking IoT-Registry APIs.

• Note that the Execution Engine uses UTC timezone. Thus all your queries should
be using UTC timezone. Moreover, the fed:startTime and fed:stopTime
should also be specified in UTC timezone.

• Sync the #PERIODICITY# and the used time interval in the query. If not
synchronized, it is possible that you get redundant data that is not useful.
Generating redundant data will again block resources and will be not efficient.

• If you use dynamic query and use fed:IntervalNowToPast, make sure that this
quantity is not more than 6 hours. As said before, while using EEE, only the latest
observation graph is queried when using global endpoint, it does not make sense
to ask for data that is beyond this 6 hour time frame.

• Please test the #URLLOCATION# before providing it. Please make sure that the
URL is operational and accepts incoming data. To help experimenters, a sample
code is provided that opens a URL that accepts incoming data and stores it in a
file. Note that, as EEE is operating in an ASYNC mode, the result when available
is sent to the experimenter. An experimenter should periodically check if the data
is available on their server or not. A very simple solution to not write a periodic
checker is to get the file that is most recently created. All the files that are sent are
time-stamped. The naming convention followed to name the such files is
String filename=JOBID.replace(“-”,””)+URLLOCATION.replace(":",
"").replace("/", "_")+”_”+LONG_TIMESTAMP;

Note here JOBID is a UUID that is set by EEE, URLLOCATION is the location that
you provide and LONG_TIMESTAMP is milliseconds after epoch.

• In case you are executing the experiment using FEDSpec, you need to install
Experiment Data receiver module on your server. This module will enable a valid
#URLLOCATION# that can be utilized in the FEDSpec. The Experiment Data
receiver installation guide is available at the following link
https://github.com/fiesta-
iot/experiment.data.receiver/blob/master/ExperimentServer/Readme.md

Please note that the module is currently tested on Tomcat and creates a
#URLLOCATION# that looks like
http(s)://HOST:PORT/ExperimentServer/store. In case you are using
HTTPS please make sure that you are using LetsEncrypt/JVM Already trusted
Certificates/Terena SSL root certificate. In case any other certificate is used the
Experiment Execution Engine will not be able to send the resultset to
#URLLOCATION#. Self-signed certificates will not work. In case you use HTTP,
there is no such restriction. The priority is given to the link that is specified. In case
this URL is not reachable for some reason, the results are stored locally within

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 17

FIESTA-IoT repositories for experimenters to later download the results. Note that
the experimenters have to create their own java code to download the results.
In case you decide to directly call the IoT-Registry APIs, you need not install this
component. Nevertheless, you will have to deal with authenticating yourself every
time you are calling IoT-Registry APIs, scheduling your experiment with in SYNC
periodicity and time interval used in the query (Still you need to follow #3 above).

• In the fed:presentationAttr value of the widget attribute please follow the
guidelines as said in the section above. The value should be a JSON string that is
of form:
{
 "Method": ["fft", "linReg"],
 "Parameters": [" ", "Predict"]
}

• Send your FEDSpec and the queries (for advanced experimenters) that you intend
to execute to the support channel, get it validated before you proceed with
registering the FEDSpec into the system or using the query and directly calling the
IoT-Registry API. In case you want to test your queries, before providing them (in
the FEDSpec and scheduling them, giving it to us to validate) you can still validate
the queries by yourself. Note that here ve refer to just getting a feel of what data is
available and if the syntax of the query is correct. Based on our recommendations
about your experiments you need to decide if creating a FEDSpec is the best
option of directly using the IoT-Registry is best for you.
Note that there are 2 aspects that we mentioned before validating the syntax and
getting a feel of the data. You can validate the syntax of the query using
http://www.sparql.org/query-validator.html. This will ensure that your query is
executable on the FIESTA-IoT Platform. To get a feel of what the query will return
you can use any REST Client (Postman, Google Chrome’s Advanced REST
Client, Curl, etc.) to send your request to the FIESTA-IoT platform. There are 3
main APIs that you need to deal with:

o https://platform.fiesta-iot.eu/openam/json/authenticate
o https://platform.fiesta-iot.eu/iot-registry/api/queries/execute/observations
o https://platform.fiesta-iot.eu/iot-registry/api/queries/execute/resources

The Authenticate API will give you an access token that you will have to use to call
the other 2 APIs. Using these APIs you can execute your query and test them. Note
that the APIs used should be based on which graph you want to query.

4.1.2 Writing efficient Queries
We list below the best practices to query the system as well in order to know what
kind of data is currently present in FIESTA-IoT repository.
• If you run first a resource discovery, you can harness the gathered sensor

information to save much time in further queries (i.e. observations based on node
ids).

• If your experiment aims at short-term data (not historical values), another thing
that can save time is the usage of IoT-Service endpoints instead of raw SPARQLs
queries. However, please note this concept is not available for all the sensors. It
can be used wherever provided. In the ontology it is represented via
iot-lite:Service.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 18

• In case you do not need the complete graph structure, please do not query for all
the concepts and properties.

• The entire structure is divided into 2 graphs: Resource graph and observation
graph. The queries must be directed to either of these graphs based on the
requirements. Query these graphs is resource efficient. In case both graphs are to
be queried, you must use another graph called “global”. We recommend you to
not query this graphs unless it is essential.

• Observations are stored in so-called graphs as they come into the system. There
is always a "current" graph which is the one to which observations are sent as
they arrive. However, every hour, the "current" graph is packed and stored with a
tag coming from the moment on which it was created, and another "current" graph
is newly created.
When you make a query on /iot-registry/api/queries/execute/global or /iot-
registry/api/queries/execute/observations your query is resolved against the
"current" graph. Thus, if you make a query just after the "current" graph has been
created, probably you will have little results (or even no results matching your
query), as more observations are stored in the "current" graph, subsequent
queries will have more results. However, when the "hour" comes, the "current" is
stored and a new empty current graph is created. The cycle starts again.

• For accessing observations in the past you have to use the "from" and "to" query
parameters as it is described in the Handbook (FIESTA-IoT, Handbook for
experimenters and extensions, 2018)

• By using the “from” and “to” query parameters the query is resolved against the
observations that came into the system on the defined time period. While the
FIESTA-IoT Platform allows a maximum of 6 hours for this time period, it is highly
recommended that smaller periods are used. It is better to make several queries
on consecutive periods spanning the portion of time in which the experiment is
interested than making one single query on the whole interval. The aggregated
response times is typically smaller.

• Learn and understand the meaning of the FILTER, GROUP, LIMIT, BIND etc.
options, and try to use them if possible. Note that adding such keywords slows
down the query execution. For example, bind significantly degrades the execution
time.

• The VALUES option of the SPARQL language <REF SPARQL> helps increasing
the efficiency of the query and significantly reduces the response time of your
queries. Typical examples where this option can be used is to specify the
phenomena and/or sensors that the query is interested in.

• It is important to optimize the query and not ask for any concepts in the WHERE
clause that is not necessary and has no impact on the selected parameters.

• Try, to the extent possible, to avoid the extraction of large amounts of data at
once (e.g. >5MB). In this case, split your queries into various ones; for instance,
sweeping the time into small windows, etc.

• There is a possibility that the dul:dataValue returned is a NaN. This NaN is
mainly reported currently by the SmartICS testbed. Thus, it is useful, in case you
do not want to receive observations that have NaN value to filter such
observations. In FIESTA-IoT, currently some observations have dul:dataValue
as NaN while some have dul:dataValue as NaN^^xsd:string. Note the
absence of data-type in the first case.

 A filter command looks like

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 19

FILTER (?dataValue != NaN^^xsd:string || ?dataValue != NaN)
The dul:dataValue currently can return following datatypes xsd:int,
xsd:double, xsd:dateTime, xsd:boolean, xsd:string. Thus it is of utmost
importance that experimenters look into what kind of data they need and
understand the mappings between QuantityKinds, Units and datatypes.

• Each sensor/resource has EXACTLY one QuantityKind and Unit associated to it.
Please refer to Testbed documentation (link below) to understand what
phenomenon is being mapped to which m3-lite concept.

o See (FIESTA-IoT, FIESTA-IoT testbed resources, s.d.) for list of Sensors,
QK and Units provided by the testbeds.

o Some other relevant documents are available at:
● SPARQL Query Language for RDF online documentation.
● Material of the first training workshop for experimenters

• IoT-Service endpoints are a good deal when it comes to get the last observations
carried out by the sensors. However, there is a number of points that has to be
considered beforehand;

o FIESTA-IoT does not specify the format of the response messages (in
the current version of the platform). This means that every testbed might
follow a different data set. Thus, experimenters have to manually parse
them.

o It is worth highlighting again that these services are not mandatory for
testbeds, so they might (or might not) decide to include these endpoints
as part of the resource description. Indeed, up to today (1st Aug 2017), 2
out of 4 testbeds in the federation (i.e. SmartSantander and SmartICS) do
offer this possibility.

o Even though there is a kind of de-facto agreement on the actual use of the
endpoints, that is, to expose the last measurement observed by a node,
this is not an official standard. Consequently, testbed providers might
use the endpoints for a different purpose.

FIESTA-IoT testbeds are deployed10 on different geographical areas: i.e. Spain
(SmartSantander), UK (SmartICS) and South Korea (KETI). Nevertheless, SoundCity
testbed does not have any specific location as this testbed uses crowdsourced
information coming from uses located in different locations around the globe.
Furthermore, more testbeds will gradually the federation.

4.1.3 Using added-value tools available
• Use query templates made available within the FIESTA-IoT Platform.

4.2 Best practices for integrating a testbed in FIESTA-IoT
The integration of a testbed within the FIESTA-IoT Platform can be basically
structured in the following steps: 1) Testbed and FIESTA-IoT taxonomy alignment; 2)
Develop your annotator and Testbed Provider Services (TPS); 3) Get FIESTA-IoT
certified; 4) Register your testbed and resources; 5) Configure your resources.

10 SoundCity testbed is actually a crowdsensing platform and is not bound to a particular physical
location.

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 20

These best practices, which have been elicited from the experienced gained during
the integration of the 11 testbeds that are currently federated within the FIESTA-IoT
Platform, are listed following the same sequence of steps. In this sense, most of
these best practices have been derived by reversing the most common doubts and
mistakes made by the testbed providers coming from the Open Calls while they were
integrating their testbeds. Some others have been extracted from the suggestions
made by the same testbed providers in the reports that they wrote to describe the
work that they performed and to evaluate their experience during the integration of
their testbeds.

4.2.1 Aligning the internal data model to the FIESTA-IoT Ontology
• Consult the on-line documentation about the FIESTA-IoT Ontology and find

matches for your sensors’ types, phenomena that these sensors observe and
their unit of measurement.

• Exploit the hierarchical nature of the FIESTA-IoT Ontology for proposing new
Quantity Kinds, Sensor Types and Units of Measurement that should be defined
as subclasses of already existing ones.

• Design the adaptation between the information model that the testbed uses
internally for representing devices and observation, and the FIESTA-IoT Ontology.
It is critical to understand how the internal concepts matches with the FIESTA-IoT
Ontology classes.

4.2.2 Annotating and sending data to to the FIESTA-IoT Platform
• Making use of the Annotator as a Service your annotated documents will benefit

from a service that will also fit with the latest version of the FIESTA-IoT Ontology.
• Select the appropriate mode of operation of your TPS depending on the original

interfaces offered by your testbed. If your testbed exposes a synchronous
interface, then the get-based mode of the TPS is better suited. If your testbed
exposes an asynchronous interface, then the push-based mode would be
preferable.
If the testbed has a mixture of interfaces, then it is better to implement the two
modes and tailor the integration during the configuration step.

• In the case of the get-based TPS, make sure that the same observation is not
sent multiple times. This might happen if your TPS is polled for the latest
observation from a sensor and that sensor has not produced any new observation
since the last time it was polled. In this situation, the TPS should not send the
observation again.

4.2.3 Getting FIESTA-IoT Certified
• Make use of the tools (i.e. ontology validator and interoperability testing) at the

Certification Portal as many times as necessary. These tools will validate the
annotated documents and TPS interfaces and provide you with valuable feedback
during the development process.

4.2.4 Registering your testbed and resources
• When generating the annotated resource descriptions it is important to provide as

much information as possible from your devices as it will be useful to
experimenters that discover them

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 21

• For all your devices it is compulsory to include the corresponding information
about the testbed to which they belond, its location, and the phenomenon that
they observe together with the unit of measurement that it uses.

• While the FIESTA-IoT Platform Portal provides a web form that makes the
registration of devices straightforward, for large testbeds the best option is to use
the AaaS to generate a document with all your devices descriptions and upload
this document directly through the corresponding option in the FIESTA-IoT
Platform Portal.

• After registering your devices, follow the steps described in the FIESTA-IoT
Testbed Providers Handbook to confirm that the process have been completed
successfully and that your devices are discoverable.

4.2.5 Configure your TPS for sending observation to FIESTA-IoT Platform
• Cluster your sensors in different schedules in such a way that helps you handling

the operation afterwards. This means cluster them by phenomenon observed, or
by mimicking the internal hierarchy within your testbed instead of doing it
randomly.
The larger your testbed is the more important this recommendation is.

• For get-based TPS:
o Make the frequency at which you configure FIESTA-IoT Platform to poll for

observations to match the frequency at which your sensors produce
observations. It does not make sense to have a polling period which is
smaller than the observation generation interval.

o Unless required due to the nature of the phenomenon observed, a 15
minutes polling frequency is recommended.

o Split your sensors in different schedules in case the number of sensors is
higher than 100. This is not a hard limit but the observation storage process
at the FIESTA-IoT Platform backend degrades with the amount of
observations that are stored in the same transaction. 100 is a rough
estimate that makes the system works in optimal conditions.

• For push-based TPS:
o Take into account the pace at which your TPS might be pushing

observations to the FIESTA-IoT Platform and avoid excessively frequent
push of data towards the Platform. Two situations have to be particularly
observed:
Large testbeds: Even when the data generation frequency of your devices,
individually, is small, the fact that there are many different sensors cause
that your TPS is constantly pushing observations.
Bursts of observations: When sensors generate bursts of observations with
high frequency during limited periods of time.
In this case, your TPS should internally digest observations and instead of
pushing each individual observation independently, only push observations
towards the FIESTA-IoT Platform after a number of them have been
collected (100 is a recommended number) or after a fixed amount of time
has passed since the last push (5 minutes is a recommended period).

Deliverable 5.4 – Doc.id: FIESTAIoT-D54-15042018-Draft

Copyright ã 2018 FIESTA-IoT Consortium 22

5 CONCLUSION

This deliverable summarizes the effort that the FIESTA-IoT consortium have made to
help experimenters to efficiently get started with the semantic platform and design,
deploy and execute their innovative experiments upon the platform. A rich handbook
is created for this purpose with plenty of examples to complete the development
guide.
Feedbacks and lessons learnt from executed experiments are gathered from different
interactive channels to be presented all in one single document. Best practices are
created from these feedbacks and lessons learnt by the FIESTA-IoT technical team
from the perspective of the external platform users in order to help future
experiments to increase their efficiency. These informations aim to point out a clear
way to a successful usage of the platform to the users at different stages of
knowledge of the platform (novice, intermediate and advanced). These informations
are not only useful for the use of FIESTA-IoT platform, but also for semantic data
discovery and retrieve in general, for security mechanism for an IoT platform in
general.

6 BIBLIOGRAPHY

FIESTA-IoT. (2018). Handbook for experimenters and extensions. Retrieved from
http://moodle.fiesta-iot.eu/pluginfile.php/711/mod_resource/content/5/FIESTA-
IoT_Handbook4ThirdParties_v4.0.pdf

