
PROPRIETARY RIGHTS STATEMENT 

This document contains information, which is proprietary to the FIESTA-IoT Consortium.  
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any 

third party, in whole or in parts, except with prior written consent of the consortium. 

 
 

HORIZONS 2020 PROGRAMME 
Research and Innovation Action – FIRE Initiative 

 

Call Identifier:  H2020–ICT–2014–1 

Project Number: 643943 
Project Acronym: FIESTA-IoT 

Project Title:  Federated Interoperable Semantic IoT/cloud          
Testbeds and Applications 

 

Infrastructure for Submitting and Managing 
IoT Experiments – V2 

Document Id: FIESTA-IoT-D4.8-20171130-Draft 

File Name: FIESTA-IoT-D4.8-20171130-Draft.pdf 

Document reference: Deliverable 4.8 

Version: Draft 

Editor:  Rachit Agarwal/Nikolaos Georgantas/Valerie Issarny 

Organisation:  Inria 

Date: 30 / 11 / 2017 

Document type: R, DEM  

Dissemination level: PU 
 
Copyright  2017 National University of Ireland - NUIG / Coordinator (Ireland), University of 
Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en 
Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom), Unparallel 
Innovation, Lda - Unparallel (Portugal), Easy Global Market - EGM (France), NEC Europe Ltd. NEC 
(United Kingdom), University of Cantabria UNICAN (Spain), Fraunhofer-FOKUS (Germany), Research 
and Education Laboratory in Information Technologies  - Athens Information Technology - AIT (Greece), 
Sociedad para el desarrollo de Cantabria – SODERCAN (Spain), Ayuntamiento de Santander – SDR 
(Spain), Korea Electronics Technology Institute KETI, (Korea). The European Commission within 
HORIZON 2020 Program funds the FIESTA-IoT project. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  1 

 

DOCUMENT HISTORY 

Rev. Author(s) Organisation(s) Date Comments 
V01 Rachit Agarwal Inria 2017/04/18 

2017/09/04 
2017/09/20 
 
 
 
 
2017/09/20 
 
 
 
 
2017/10/24 
 

Initial version of the Document 
Updated TOC 
Section: Relation with the Functional 
Architecture, Starting Service with 
EEE, Experiment Deployment 
Services, Execute Experiment 
Section: EEE and Receiver 
Requirements, EEE Monitor APIs 
Specification, EEE Accounting APIs 
Specification, Experiment Data 
Receiver specification 
Section: Experiment Management 
Console 
Introduction 

 Elias Tragos NUIG 2017/10/26 NUIG Contributions V1 
 Ronald Steinke FOKUS 2017/10/27 

2017/10/30 
FOKUS contributions V1 
FOKUS contributions V1 updates 

 Tarek Elsaleh UNIS 2017/10/27 UNIS contributions V1 
 Ramnath Teja Chekka KETI 2017/10/31 KETI contributions V1 
V02 Rachit Agarwal Inria 2017/11/01 V2 Generated 
 Ramnath Teja Chekka KETI 2017/11/03 KETI contributions V2 
 Ronald Steinke FOKUS 2017/11/07 FOKUS contributions V2 Updates 
 Tarek Elsaleh UNIS 2017/11/07 UNIS contribution V2 Updates 
V03 Rachit Agarwal Inria 2017/11/08 V3 Generated 
 Ronald Steinke FOKUS 2017/11/14 KETI contributions V3 
 Ramnath Teja Chekka KETI 2017/11/14 FOKUS contributions V3 
V04 Rachit Agarwal Inria 2017/11/14 V4 Generated, Conclusion 
 Tarek Elsaleh UNIS 2017/11/15 UNIS Contribution V4 
 Elias Tragos NUIG 2017/11/15 NUIG contributions V4 
V05 Rachit Agarwal Inria 2017/11/15 Final version ready for review 
 Flavio Cirillo 

David Gomez 
Paul Grace 

NEC 
UC 
ITInnov 

2017/11/21 
2017/11/21 
2017/11/22 

TR Review 
TR Review 
QR Review 

V06 Rachit Agarwal, 
Elias Tragos, Tarek 
Elsaleh 
Ronald Steinke 
Ramnath Teja chekka 

Inria 2017/11/25 Addressed comments 

 Rachit Agarwal Inria 2017/11/28 Deliverable ready for submission 
Draft Elias Tragos NUIG 2017/11/30 Draft for submission 
 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  2 

 

Overview of Updates/Enhancements over D4.7 

Section Description 
2 Added new components and divided the section into two sections (section 2 and 

section 3) 

4 Added FIESTA-IoT Technical Architecture 

5 Modified API descriptions, Added new APIs 

6 Added other tools section that describe specifications of the new components 

7 Updated Portal description 

8 Updated Implementation details  

 
 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  3 

 

TABLE OF CONTENTS 

1 Executive Summary/Introduction ..................................................................................... 7 

2 Relation with the Functional Architecture ..................................................................... 9 

3 Requirements ......................................................................................................................... 10 
3.1 Experiment Modelling .............................................................................................................. 10 
3.2 EEE and Receiver ........................................................................................................................ 11 
3.3 Experiment Execution Result-set Data store ................................................................... 13 
3.4 Experiment/Testbed Monitoring Tool ............................................................................... 13 
3.5 Portal .............................................................................................................................................. 15 

4 FIesta-IoT Technical Architecture .................................................................................. 16 
4.1 Sequence Diagram ..................................................................................................................... 19 

4.1.1 Starting Service with EEE .................................................................................................................. 19 
4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool ................................................. 20 

5 Other Tools .............................................................................................................................. 22 
5.1 Experiment Result Store (ERS) ............................................................................................. 22 
5.2 Experiment Data Receiver ...................................................................................................... 22 
5.3 UI Tools .......................................................................................................................................... 23 

5.3.1 Experiment Editor ................................................................................................................................ 23 
5.3.2 Experiment Management Console (EMC) ................................................................................... 24 
5.3.3 Reasoning tool (inference Tool) ..................................................................................................... 26 
5.3.4 FIESTA-IoT Acquisition Toolkit ...................................................................................................... 45 
5.3.5 Experiment/Testbed Monitoring Tool ........................................................................................ 47 

6 Experimentation Services and API Specification ....................................................... 53 
6.1 Experiment Deployment Services ........................................................................................ 53 

6.1.1 Scheduling APIs ..................................................................................................................................... 53 
6.1.2 Subscription APIs.................................................................................................................................. 63 
6.1.3 Polling APIs ............................................................................................................................................. 65 

6.2 Experiment Management Services ...................................................................................... 67 
6.2.1 EEE Monitor APIs .................................................................................................................................. 67 
6.2.2 EEE Accounting APIs ........................................................................................................................... 70 
6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs ....................................................... 71 

6.3 Experiment ResultSet Storage APIs ..................................................................................... 76 
6.4 Documentation of APIs ............................................................................................................ 78 

7 Prototype ................................................................................................................................. 79 
7.1 PORTAL .......................................................................................................................................... 79 

7.1.1 Signing in .................................................................................................................................................. 79 
7.1.2 Menus ........................................................................................................................................................ 80 

7.2 Usage .............................................................................................................................................. 84 

8 Implementation ..................................................................................................................... 93 
8.1.1 Source Code Availability .................................................................................................................... 93 
8.1.2 Components ............................................................................................................................................ 93 

9 Conclusion ............................................................................................................................. 104 

References ...................................................................................................................................... 105 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  4 

 

LIST OF FIGURES 

FIGURE 1: FIESTA-IOT FUNCTIONAL ARCHITECTURE COMPONENTS ADDRESSED IN THIS DELIVERABLE ARE 
MARKED IN GREEN .............................................................................................................................. 9 

FIGURE 2: FIESTA-IOT TECHNICAL ARCHITECTURE (FULL VIEW) .............................................................. 17 
FIGURE 3: FIESTA-IOT TECHNICAL ARCHITECTURE (EXPERIMENTER VIEW) ............................................... 18 
FIGURE 4: SEQUENCE DIAGRAM FOR STARTING AN EXPERIMENT ................................................................ 20 
FIGURE 5: BOOTSTRAPPING OF THE TESTBED MONITORING ........................................................................ 20 
FIGURE 6: USER INTERACTION WITH THE TESTBED MONITORING ................................................................ 21 
FIGURE 7: EXPERIMENTER INTERACTIONS WITH ERS ................................................................................. 22 
FIGURE 8: EXPERIMENT EDITOR INITIAL UI ................................................................................................ 23 
FIGURE 9: FEMO XML PREVIEW ............................................................................................................. 24 
FIGURE 10: EXPERIMENT MANAGEMENT CONSOLE .................................................................................... 25 
FIGURE 11: CREATE RULE SCREEN .......................................................................................................... 26 
FIGURE 12: CREATE NEW RULE WHEN SEMANTIC EXPERT .......................................................................... 27 
FIGURE 13: CREATE NEW RULE WHEN SEMANTIC EXPERT –TEXT VIEW INPUT ............................................. 28 
FIGURE 14: CREATE NEW RULE - NON-SEMANTIC EXPERT ......................................................................... 30 
FIGURE 15: EXAMPLE OF RULE DETAILS .................................................................................................... 32 
FIGURE 16: EDIT RULE INFORMATION ....................................................................................................... 33 
FIGURE 17: EDIT RULE CONTENT .............................................................................................................. 34 
FIGURE 18: RULE REGISTRATION HOME .................................................................................................... 35 
FIGURE 19: REGISTER RULE- AVAILABLE RULES ....................................................................................... 36 
FIGURE 20: REGISTER RULE - DETAIL RULE CONTENT ............................................................................... 37 
FIGURE 21: REGISTER RULE - SELECT SENSOR ........................................................................................ 38 
FIGURE 22: REGISTER RULE – DETAILED INFORMATION ............................................................................. 39 
FIGURE 23: USER INTERFACE FOR EDITING A RULE REGISTRATION ............................................................. 40 
FIGURE 24: RULE EXECUTION HOME PAGE ............................................................................................... 41 
FIGURE 25: USER INTERFACE FOR CREATING A NEW RULE EXECUTION ....................................................... 42 
FIGURE 26: EXECUTE RULE ON SENSOR BASE ON SPECIFIC TIME ................................................................ 43 
FIGURE 27: RE-EXECUTE RULE ................................................................................................................ 45 
FIGURE 28: ANALYTICS TOOLKIT TABS ...................................................................................................... 46 
FIGURE 29: ANALYTICS INPUT TAB ............................................................................................................ 46 
FIGURE 30: ANALYTICS TOOLKIT RESULT .................................................................................................. 47 
FIGURE 31: THE TESTBED MONITORING TOOL EMBEDDED IN THE FIESTA-IOT PORTAL .............................. 48 
FIGURE 32: TESTBED MONITORING COMPONENT IN THE FIESTA-IOT PLATFORM........................................ 49 
FIGURE 33: PORTAL WELCOME PAGE ........................................................................................................ 79 
FIGURE 34: PORTAL LOGIN PAGE .............................................................................................................. 80 
FIGURE 35: PORTAL STATISTICS PAGE ...................................................................................................... 82 
FIGURE 36: EXPERIMENT TEMPLATE FEMO .............................................................................................. 85 
FIGURE 37: EXPERIMENT TEMPLATE FISMO ............................................................................................. 85 
FIGURE 38: EXPERIMENT TEMPLATE QUERY ............................................................................................. 86 
FIGURE 39: PORTAL EXPERIMENTER MENU ............................................................................................... 87 
FIGURE 40: EXPERIMENT REGISTER CLIENT .............................................................................................. 88 
FIGURE 41: EXPERIMENT REGISTER CLIENT - EXPERIMENT BROWSER ....................................................... 88 
FIGURE 42: PART 1: EXPERIMENT DETAIL PANE ........................................................................................ 91 
FIGURE 43: PART 2: ASSOCIATED FISMOS PANE ..................................................................................... 91 
FIGURE 44: PART 3: SUBSCRIPTION PANE ................................................................................................. 91 
 

  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  5 

 

LIST OF TABLES 

TABLE 1: REQUIREMENTS ADDRESSED BY EXPERIMENT MODELLING TOOL (EXPERIMENT EDITOR) ............... 10 
TABLE 2: REQUIREMENTS ADDRESSED BY EEE AND RECEIVER .................................................................. 11 
TABLE 3: REQUIREMENTS ADDRESSED BY ERS ......................................................................................... 13 
TABLE 4: REQUIREMENTS ADDRESSED BY EXPERIMENT/TESTBED MONITORING TOOL ................................. 13 
TABLE 5:REQUIREMENTS ADDRESSED BY PORTAL ..................................................................................... 15 
TABLE 6: QUERY FOR CREATING A RULE ................................................................................................... 28 
TABLE 7: SPARQL QUERY OR A RULE ...................................................................................................... 31 
TABLE 8: SPARQL QUERY ...................................................................................................................... 44 
TABLE 9: SPARQL QUERY ...................................................................................................................... 50 
TABLE 10: SPARQL QUERY .................................................................................................................... 51 
TABLE 11: ACCESS ROLES PER PORTAL MENU ........................................................................................... 83 
TABLE 12: SYSTEM REQUIREMENTS FOR EXPERIMENT EDITOR .................................................................. 93 
TABLE 13: DEPENDENCIES FOR EXPERIMENT EDITOR ................................................................................ 94 
TABLE 14: SYSTEM REQUIREMENTS FOR PORTAL ...................................................................................... 95 
TABLE 15: DEPENDENCIES FOR PORTAL ................................................................................................... 95 
TABLE 16: SYSTEM REQUIREMENTS FOR ERS .......................................................................................... 96 
TABLE 17: DEPENDENCIES FOR ERS ........................................................................................................ 97 
TABLE 18: SYSTEM REQUIREMENTS FOR DATA RECEIVER ......................................................................... 98 
TABLE 19: DEPENDENCIES FOR DATA RECEIVER ....................................................................................... 99 
TABLE 20: SYSTEM REQUIREMENTS FOR EXPERIMENT/TESTBED MONITORING TOOL ................................ 101 
TABLE 21: DEPENDENCIES FOR EXPERIMENT/TESTBED MONITORING TOOL .............................................. 101 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  6 

 

TERMS AND ACRONYMS 

Acronym Meaning 

API Application Programming Interface 

DOI Domain of Interest 

DSL Domain Specific Language 

EEE Experiment Execution Engine 

EMC Experiment Management Console 

ERM Experiment Registry Management Component 

ERS Experiment Result Store 

FAT FIESTA-IoT Analytics Toolkit 

FC Functional Component  

FEDSpec FIESTA-IoT Experiment Description Specification  

FEMO FIESTA-IoT Experiment Model Object 

FISMO FIESTA-IoT Service Model Object 

HTML Hyper Text Markup Language 

HTTP HyperText Transfer Protocol 

IOT Internet of Things 

IRI Internationalized Resource Identifier 

JSON JavaScript Object Notation 

OC Open Call 

UI User Interface 

URL Universal Resource Locator 

WP Work Package 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  7 

 

1 EXECUTIVE SUMMARY/INTRODUCTION 

This deliverable is a second iteration [1]. It is noteworthy to assert that the current 
deliverable should not be considered as a standalone version but instead read along 
with deliverable [1]. This document provides an update to the reported tools and also 
provides technical details on newly developed tools that support experimentation 
over the FIESTA-IoT Meta Cloud (data store). Some key updates performed in the 
already reported tools, such as Experiment Execution Engine (EEE), Experiment 
Management Console (EMC) and Portal include: 

• Updates to the API (Application Programming Interface) of Experiment 
Execution Engine,  

• Updates to the User Interface (UI) of EMC to support: 
o Experimenters to get/know the required IDs for the getting data from 

Experiment Result Store (ERS) 
o Delete the scheduled FISMO (FIESTA-IoT Service Model Object) from 

EEE. Note that throughout this deliverable we will use FISMO and 
FEMO (FIESTA-IoT Experiment Model Object) but they should be 
considered as a Service (FISMO) within an Experiment (FEMO).  

• Updates to the Portal include: 
o A newly designed interface to address issues raised previously, such 

as an enhanced menu that is based on the type of user (Experimenter, 
Testbed Admins and FIESTA-IoT Admins) and streamlined layout 

o Availability of new tools for different types of users of FIESTA-IoT, and 
o Support for the mobile version of portal.  

Besides the above modifications and updates, we also report technical details on the 
newly developed and functional modules, such as Experiment editor, ERS and 
Experiment/Testbed Monitoring tool. Note that some technologies that we described 
in [1] towards building tools, such as Experiment Editor, are now not used to build the 
tool due to some limitations with regards to the handling of multiple users.  
Within this deliverable, as reported in [1], we start by analysing the requirements 
collected in [2] for the developed tools, either new or existing, those coming from in-
house experimenters [3], [4], Open Call (OC) participants and the validation done by 
in-house experimenters [5].  
As this is the last technical deliverable in terms of tools provided under Work Packages 
3 and 4 (WP3 and WP4), it is also essential that we report how the FIESTA-IoT platform 
technical architecture looks like and provide a brief overview of the interactions among 
those tools that facilitate experimentation over the FIESTA-IoT infrastructure. Note 
that, within this deliverable, we only focus on the part of FIESTA-IoT platform technical 
architecture that focuses on experimenters. Following the architecture, we provide 
updated sequence diagrams for “starting the execution” of the experiment using EEE. 
The update mainly reflects the integration of FIESTA-IoT Analytics Toolkit (FAT) and 
the possibility of scheduling the experiment on IoT-Registry or FAT.  
For the monitoring tool, a technical description of it was provided in [6]. In this 
deliverable, however, we present the user side of the tool and focus on the UI. 
Additionally, we describe the new tools (those that were not reported before) such as 
ERS, Experiment Data receiver and UI interface for tools such as Experiment editor, 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  8 

 

EMC and Reasoning tool to name a few. After this description, we then list the APIs 
that play an essential role in fulfilling the experimenters’ needs. These APIs mainly 
include the scheduling, subscription, polling, monitoring, accounting and data 
download APIs provided by various tools such as EEE, monitoring and ERS tools.  
To meet the users’ expectations, performance analysis of the tools is an essential part 
once the tools are developed. As all the tools that support development, deployment 
and management of the experiment are either UI tools or delegate the requests to IoT-
Registry, analysis of IoT-Registry with respect to the experimenters’ need is essential. 
Since this assessment has been already carried out and been reported in [7], we do 
not report it here. 
A simple mock-up walk-through of the FIESTA-IoT portal (that is now supported in 
various browsers either on Desktop or on Mobile) follows, with the aim to clearly explain 
to experimenters the workflow and steps to be performed in order to execute an 
experiment. Note that the steps reported in this deliverable only focus on one 
interaction path within the technical framework. However, we do not report workflow 
for experimenters that directly access IoT-Registry, rather we report the workflow that 
an experimenter need to follow when interacting with FIESTA-IoT tools such as 
Experiment Editor, EMC, EEE that facilitate the execution of the experiment. 
A clear installation steps for the tools and how to use the above-mentioned 
components follow the section. The conclusion concludes the deliverable. 
We also refer the audience to [8] and [1] in order to know more about WP4, its scope, 
related tasks and targeted audience.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  9 

 

2 RELATION WITH THE FUNCTIONAL ARCHITECTURE 

The functional architecture of the FIESTA-IoT platform is described in [9]. An updated 
version of the same is available as in Figure 1. In relation to the platform, in this 
deliverable we are mainly focused on describing functionalities (other than those 
mentioned in [1]) that are now supported by both the FIESTA-IoT functional 
architecture and the FIESTA-IoT technical architecture. To provide a comprehensive 
view about the tools that are supported by the functional architecture and are reported 
in this deliverable, we refer readers to Figure 1. These tools are: EEE, Experiment 
Editor, Experiment Registry Module (ERM), EMC, ERS, and Experiment/Testbed 
Monitoring (performance monitoring). It should be noted that we have moved some of 
the tools already reported within WEB Browsing and Configuration Functional 
Component (FC) outside the FC. We mainly describe interactions between the 
components that enable experimentation over the FIESTA-IoT platform as part of the 
technical architecture (Section 4). As for the above-mentioned components, we 
present them in the next sections along with more requirements. 

 
Figure 1: FIESTA-IoT Functional Architecture Components addressed in this 
deliverable are marked in green 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  10 

 

3 REQUIREMENTS  

In this section we provide how the requirements those proposed in [2] are fulfilled by 
the developed tools. 

3.1 Experiment Modelling 

Table 1 lists requirements addressed by Experiment Editor. 
Table 1: Requirements addressed by Experiment Modelling tool (Experiment 

Editor) 
Requirement ID Description 
24_NFR_ACC_Tools_planning_a
uto_tasks 

FIESTA-IoT could provide tools to enable the 
planning of automated tasks 

32_NFR_ACC_Provide_dev_depl
oy_manag_config_tools 

FIESTA-IoT should provide development, 
deployment, management, and configuration 
tools 

35_NFR_PLA_Manage_resources
_in_query_or_experiment 

FIESTA-IoT should visualize and manage the 
resources entailed in a specific query or 
experiment 

 
For Experiment Modelling the Experiment Editor addresses the above three 
requirements. We next provide details so as to how these requirements were met. 

• The experiment editor provides the experimenters a UI tool to build experiments 
(FEMO), services (FISMO) and Queries that would allow them to easily build 
task thereby fulfilling the requirements 
24_NFR_ACC_Tools_planning_auto_tasks and 
32_NFR_ACC_Provide_dev_deploy_manag_config_tools. The tool itself is 
explained later in the Section 5.3.1 while the workflow is provided in Section 
7.2.1.2.1.  
Note that the requirement  
32_NFR_ACC_Provide_dev_deploy_manag_config_tools is also fulfilled by 
EEE as it deploys the configuration (in other words FEMO) that is created using 
Experiment Editor. 

• With respect to the experiments, the tool also provides them the option to 
manage and configure the experiments (FEMOs) and services (FISMOs) 
thereby fulfilling the requirement 
35_NFR_PLA_Manage_resources_in_query_or_experiment. Note that using 
the tool we allow the experimenters to manage their experiment. This is done 
using the capabilities that the UI provides and interactions the tool does with the 
ERM. As this tool is a UI based tool, the tool provides methods to visualize the 
needed attributes in the experiment.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  11 

 

3.2 EEE and Receiver 

Beyond those described in the previous version of the deliverable [1], Table 2 lists 
requirements that are further satisfied by EEE and Receiver. 

Table 2: Requirements addressed by EEE and Receiver 
Requirement ID Description 
11_FR_ACC_Request_data_diff
erent_ways 

It must be possible for the experimenter to 
request for data in different ways (e.g. event-
based, periodic, and/or autonomous) 

23_NRF_ACC_Page_in_subreque
sts 

When a large set of information is requested, it 
should be possible to page it into different sub-
requests 

24_NFR_ACC_Tools_planning_a
uto_tasks 

FIESTA-IoT could provide tools to enable the 
planning of automated tasks 

30_NFR_ACC_FIESTA_well_docu
mented 

FIESTA-IoT must be well documented. 

32_NFR_ACC_Provide_dev_depl
oy_manag_config_tools 

FIESTA-IoT should provide development, 
deployment, management, and configuration 
tools 

41_NFR_PLA_Minimize_process
ing_delay 

Processing delay has to be minimized when 
requesting information 

42_NFR_PLA_Data_generated_f
rom_processing_info 

Data generated from processing information 
could be provided to the experimenters 

51_NFR_PLA_FIESTA_hightly_r
eliable 

FIESTA-IoT needs to be highly reliable 

53_NFR_PLA_Execution_concur
rent_services 

The platform must support execution of 
concurrent 
Services including data generation and usage 
from the same resources 

 
The EEE is a component that satisfies part of the non-functional requirement 
32_NFR_ACC_Provide_dev_deploy_manag_config_tools defined in [2]. Further, 
EEE is able to: 

• Schedule at a defined rate a FISMO (a service Model that describes the 
experiment consisting of entities such as experiment control, details about the 
query, see [8]) as a Job on the Meta Cloud with minimum possible delay: this 
requires the EEE to read the QuerySchedule entity that is a part of FISMO, 
connect to the Meta Cloud and use the Meta Cloud API to execute the query 
defined in the Query attribute of the FISMO. EEE provides experimenters a 
functionality to subscribe to any services (FISMOs) on top of their own FISMOs, 
could request data in different ways for example, based on time period, and 
could poll for certain data (event based). This satisfies the 
11_FR_ACC_Request_data_different_ways. Different EEE APIs that support 
this requirement are reported in Section 6.1. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  12 

 

• In order to efficiently serve the experimenters with the data with minimum 
delays, EEE internally stores the service requests rather than contacting ERM 
component. Thus, EEE satisfies the 
41_NFR_PLA_Minimize_processing_delay. 

• Schedule multiple FISMOs on the Meta Cloud simultaneously. This satisfies 
53_NFR_PLA_Execution_concurrent_services. 

• Poll a service to get the data: the EEE enables the execution of the query 
defined in the Query entity of the FISMO once and on demand. 

• After scheduling, EEE maintains a state variable of the scheduled job: this help 
experimenters to know the state of their experiment.  

• EEE maintains a log of executed jobs: this enables an experimenter to know 
how many times a specific FISMO has been successfully executed. 

• The Execution logs and state variables (processing information) is shown to the 
experimenter via EEE. This targets the 
42_NFR_PLA_Data_generated_from_processing_info and is further 
complemented by the monitoring tool. 

• EEE schedules FISMO queries on IoT-Registry or FAT in an automated manner 
where experimenters are needed to just start/stop the process on EEE. This 
feature enables 24_NFR_ACC_Tools_planning_auto_tasks. 

• Provide a mechanism to the experimenters to subscribe/unsubscribe to a 
certain already discoverable FISMO: this enables experimenters to utilize 
already existing FISMOs in their experiments. In order to subscribe, the 
experimenter should provide the experimentOutput attribute in the FISMO so 
that the EEE could deliver the output accordingly. 

• On top of subscription, if an owner deletes a FISMO, then the subscribers will 
not be notified about the deletion: this allows subscribers to keep execution of 
the subscribed FISMO ongoing until the FISMO is unsubscribed.  

• Be able to delete any experimenter related executing job from the EEE along 
with its history. 

• EEE is able to invoke related widgets like FIESTA-IoT Analytics toolkit besides 
just interacting with IoT-Registry. 

• EEE is able to send data in different formats required by experimenters. 
• For a large resultset paging of the result is provided: this enables the 

23_NRF_ACC_Page_in_subrequests. This is achieved by the Sending module 
of the EEE that breaks the large datasets into multipart before sending it to the 
Receiver that concatenates these parts into one. 

• The EEE is stable and satisfy the 51_NFR_PLA_FIESTA_highly_reliable. 
• On top of above, all the APIs of the EEE are well documented (see Section 6.4) 

and made available to the experimenters so that they can understand the 
working of the EEE better. This ensures fulfilment of 
30_NFR_ACC_FIESTA_well_documented with respect of EEE. 

 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  13 

 

3.3 Experiment Execution Result-set Data store 

Table 3: Requirements addressed by ERS 
Requirement ID Description 
52_NFR_PLA_Elasticity_abundance_
computational_assets 

FIESTA-IoT should have elasticity and 
abundance in terms of computational assets 
(especially storage and computation) 

 
The fit criterion with respect to the only requirement (listed in Table 3) satisfied by ERS 
states that “FIESTA-IoT is able to store data from experiments during the requested 
period and process any experiment that did not expire”. The ERS addresses this 
requirement by providing a storage facility for experimentation results (or data), which 
can be retrieved by the experimenter at a convenient time. Section 5.1 explains how 
this storage facility works. 

3.4 Experiment/Testbed Monitoring Tool 

Table 4: Requirements addressed by Experiment/Testbed Monitoring Tool 
Requirement ID Description 
15_FR_ACC_Discover_resource
s_by_characteristics 

It must be possible to get/discover resources 
based on characteristics 

22_NFR_ACC_Distinguish_type
_of_data 

It must be clear to the experimenters what they 
are receiving, (e.g. measurements, metadata, 
resources, characteristics, etc.) 

30_NFR_ACC_FIESTA_well_docu
mented FIESTA-IoT must be well documented. 

35_NFR_PLA_Manage_resources
_in_query_or_experiment 

FIESTA-IoT should visualize and manage the 
resources entailed in a specific query or 
experiment 

39_NFR_PLA_Info_testbed_agn
ostic_way 

FIESTA-IoT must handle information in a 
Testbed agnostic way 

40_NFR_PLA_Process_feedback
s 

FIESTA-IoT should process the measurements 
and / or resources feedback to validate the 
functioning of resources 

41_NFR_PLA_Minimise_process
ing_delay 

Processing delay has to be minimised when 
requesting information 

42_NFR_PLA_Data_generated_f
rom_processing_info 

Data generated from processing information 
could be provided to the experimenters 

49_NFR_PLA_Reliable_time_sy
nc 

FIESTA-IoT should support testbeds in different 
time zones 

64_NFR_RES_Resource_provide
_characteristics Every resource must be characterised 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  14 

 

65_NFR_RES_Resource_identif
ied_code 

Every resource must be univocally identified by a 
code 

 
The Experiment/Testbed Monitoring Tool satisfies parts of the non-functional 
requirement 35_NFR_PLA_Manage_resources_in_query_or_experiment. 
Additionally, the non-functional requirements described in 
40_NFR_PLA_Process_feedbacks and 
42_NFR_PLA_Data_generated_from_processing_info were addressed. Further, 
the Experiment/Testbed Monitoring tool is able to: 

• Show the monitored testbeds in a total view and showing the number of active 
resources per testbed. Additionally, it shows every sensor per testbed with 
metadata and latest observations. This addresses partially 
35_NFR_PLA_Manage_resources_in_query_or_experiment 

• Process the gathered data of the testbeds used for monitoring in order to find 
not working resources. The result of the processed data shall be available via 
the API as well as the collected and transformed data. This addresses mainly 
the two requirements 40_NFR_PLA_Process_feedbacks and 
42_NFR_PLA_Data_generated_from_processing_info 

• Retrieving the data from the IoT-Registry and storing it in a transformed way 
into another database in order to prepare the data for the visualization and for 
providing it via the API. This assures 
41_NFR_PLA_Minimise_processing_delay 

• Providing the summarized overview and the detailed view per testbed in a way 
that it is clear for the experimenter which information he/she is retrieving. This 
fulfils 22_NFR_ACC_Distinguish_type_of_data, 
49_NFR_PLA_Reliable_time_sync, 
64_NFR_RES_Resource_provide_characteristics and 
65_NFR_RES_Resource_identified_code. 

• Using the additional IDs per stored resource but also linking to the original ID, 
which is used in the IoT-Registry. So not only the combined and transformed 
resources used in the Monitoring Tool can be addressed but also the original 
resources. This makes sure that 39_NFR_PLA_Info_testbed_agnostic_way 
is still fulfilled. 

• The API is documented but also self-explanatory in its usage, as required by 
30_NFR_ACC_FIESTA_well_documented. 

• The API provides methods to mimic the same filtering methodology as it is used 
in the IoT-Registry, e.g., filtering resources by phenomena. This fulfils 
15_FR_ACC_Discover_resources_by_characteristics. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  15 

 

3.5 Portal 

Table 5:Requirements addressed by Portal 
Requirement ID Description 
20_FR_SEC_Experimenter_single
-sign-on 

Single-sign-on mechanism has to be in place 

24_NFR_ACC_Tools_planning_aut
o_tasks 

FIESTA-IoT could provide tools to enable the 
planning of automated tasks 

30_NFR_ACC_FIESTA_well_docume
nted 

FIESTA-IoT must be well documented. 

35_NFR_PLA_Manage_resources_i
n_query_or_experiment 

FIESTA-IoT should visualise and manage the 
resources entailed in a specific query or 
experiment 

 
The FIESTA-IoT portal plays the role of the user interface for all types of users. It 
incorporates interfaces for managing and handling all functionalities provided by the 
FIESTA-IoT platform. For logging in, a single security mechanism is used and the users 
are only required to login once, they get a token, initiating a session and then they get 
access to all functionalities, without the need to login separately (addressing the 
20_FR_SEC_Experimenter_single-sign-on requirement) [10].  
The portal includes also modules for running automated tasks, especially for the 
registration of multiple resources (at once) or for scheduling the execution of 
experiments (addressing the 24_NFR_ACC_Tools_planning_auto_tasks 
requirement).  
Additionally, the portal provides a simple visualization tool for the results of a 
query/experiment, so that experimenters can have a first look at the results.  
Testbed providers and experimenters can also see real-time information about the 
testbeds and the registered resources, to see which are online and sending data and 
use it for debugging purposes (addressing the 
35_NFR_PLA_Manage_resources_in_query_or_experiment requirement).  
The FIESTA-IoT portal includes also a help section dedicated to the documentation of 
all tools, services and APIs for the experimenters and the testbed providers 
(addressing the 30_NFR_ACC_FIESTA_well_documented requirement). 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  16 

 

4 FIESTA-IOT TECHNICAL ARCHITECTURE 

A technical version of the FIESTA-IoT platform architecture is provided in Figure 2. 
Note that, within the scope of this deliverable we are only limited to describe those 
components that address the experimentation plane (upper part of the Figure 2). 
Figure 3 provides this view. We next provide a brief description of the functionality of 
the components:  

• IoT-registry: This component is the cornerstone of the FIESTA-IoT platform. It is 
the module in charge of handling the semantic information that flows across the 
FIESTA-IoT platform. Basically, it undertakes the control of the triple-store and 
internally holds the overall semantic meta-repository. This component is already 
described in [7] thus it is not described in this deliverable. 

• Experiment Registry Management (ERM): It is the registry where all the 
experiments are stored. The Experiment Execution Engine and the Experiment 
Management Console use the ERM APIs to read the information stored about the 
experiment and take actions accordingly. 

• Experiment Management Console (EMC): It is the User Interface (UI) to the 
Experiment Execution Engine (EEE). Using this an experimenter can control the 
execution of the FISMOs beyond what is specified via FEDSpec (FIESTA-IoT 
Experiment Description Specification). Using EMC an experimenter can also know 
other related information about the experiment that he provided in the FEDSpec. 

• Experiment Execution Engine (EEE): Engine that executes the experimenter’s 
need on the IoT-Registry at a specified schedule. It defines a set of services/APIs 
that are essential for the execution of the experiment. The EMC uses EEE APIs to 
provide experimenters the execution related information. 

• Experiment Result Store (ERS): ERS stores the results that are not been sent to 
the experimenter due to any reason like unavailability of receiver etc. 

• Experiment Data Receiver (Receiver):  This component is usually executed on 
the experimenter side and not on FIESTA-IoT side. This component opens a 
channel for receiving data from EEE after the execution of the query. 

• Experiment Editor (Editor): This component enables experimenters to quickly 
create FEDSpecs and deploy them on the FIESTA-IoT platform. These FEDSpecs 
will then be read by EEE and executed accordingly. 

• FIESTA-IoT Analytics Toolkit (FAT): This component enables experimenters to 
execute data analysis techniques on datasets retrieved from IoT-Registry.  

• FIESTA-IoT Monitoring: This tool allows experimenters to view basic statistics of 
the data available within FIESTA-IoT ecosystem. It also allows experimenters to 
know which testbeds are pushing data and how many resources are active in the 
moment. 

• Reasoning: this tool allows experimenters to define their own reasoning rules (or 
re-use rules defined by other experimenters) to run on top of the gathered data in 
order to extract some results. The rules are in the form of “if-then” and can be run 
on current or historical data streams. 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  17 

 

 

 
Figure 2: FIESTA-IoT Technical Architecture (Full View) 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  18 

 

 
Figure 3: FIESTA-IoT Technical Architecture (Experimenter view) 
An experiment is defined as “Experiment is a test under controlled conditions that is 
made to demonstrate a known truth, examine the validity of a hypothesis, or determine 
the efficacy of something previously untried” [11]. Nevertheless, as discussed 
previously we focus on data-oriented experimentation that can be performed on IoT 
data stored in the FIESTA-IoT platform. To support experimentation, tools that enable 
development, deployment and management of an experiment are developed and 
integrated to fulfil the execution of an experiment. To brief about the tools (see Figure 
3), using a UI tool such as Experiment Editor an experimenter can create or develop 
the DSL for the experiment based on their needs. This DSL, also called as a FEDSpec, 
contains the specification for the EEE tool to execute the defined experiment. EEE 
essentially schedules or deploys the experiment on the FIESTA-IoT ecosystem based 
on the provided specifications. The Experiment Editor uses ERM to save a FEDSpec 
within the FIESTA-IoT ecosystem. EEE then reads the specifications to schedule the 
experiment on the FIESTA-IoT ecosystem. EEE is accompanied by an experiment 
controlling and management UI (Experiment Management Console or EMC) that 
enables experimenters to view execution summary and control the execution of their 
experiment. Once an experiment is executed by the EEE, the output is sent to 
experimenters, who have to to enable a Receiver on their side to get and handle the 
results. In case these results are not delivered to the experimenter, they are stored in 
an ERS repository where experimenters can download the results at will. Nonetheless, 
these tools are also complemented by tool-specific dedicated public APIs using which 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  19 

 

experimenters can also develop their own experiment workflow in case needed. In 
another case if an experimenter does not want to use such tools, they can create their 
own experiment execution like module and query directly the IoT-Registry using the 
public IoT-Registry APIs.  
A description of some of the components such as EEE and EMC was provided in the 
V1 of the deliverable [1]. However, in this deliverable we focus on the components that 
were not described previously. In the next subsection, we present, modified sequence 
diagrams with respect to EEE functionality. We also show sequence diagrams for the 
new components. For components like FAT, deliverable [6] provides more technical 
details. 

4.1 Sequence Diagram  

The addition of the data analytics, result storage, and Experiment modelling has led to 
a modified sequence diagram for the EEE. Note that sequence diagrams presented in 
V1 of this deliverable are still valid except the starting of a service.  

4.1.1 Starting Service with EEE  

The updates to “starting of a service” sequence diagram is provided below in Figure 4. 
Here, we introduce FAT, Sender module and the ERS. If an experimenter defines 
widget parameter in the FISMO object of the FEDSpec, [12], towards the usage of FAT 
EEE calls the FAT APIs instead of calling IoT-Registry APIs directly. FAT then calls 
the IoT-Registry APIs, gets the results and stores them in the ERS. Experimenters are 
then required to call the ERS APIs to get the results. In Section 6.3 we define the ERS 
APIs. Instead, if the experimenter does not specify the widget, the EEE calls the IoT-
Registry API to retrieve the results of the query specified in the FISMO object. EEE 
upon a successful response from IoT-Registry, sends the results to the experimenter 
to the URL endpoint specified by them. If the send fails due to any reason, the EEE 
stores the results in the ERS for experimenters to later get the results. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  20 

 

 
Figure 4: Sequence Diagram for starting an Experiment 

4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool 

This section provides sequence diagrams for the Experiment/Testbed Monitoring tool. 

 
Figure 5: Bootstrapping of the Testbed monitoring 
The bootstrapping of the Testbed Monitoring can be seen in Figure 5. First the tasks 
components “Update Testbeds”, “Update Sensors” and “Update Observations” for 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  21 

 

retrieving the needed data from the IoT-Registry are started by the “main” component. 
The retrieved data is transformed and is stored into the mongoDB. This makes sure 
that enough data is available for the UI and the API to serve requests properly. 

 
Figure 6: User Interaction with the Testbed Monitoring 
In Figure 6 the two different options for retrieving either a page from the GUI or doing 
a request against the API are shown. The required login is for both operations 
necessary. Also for every operation the data will be retrieved from the mongoDB in 
order to serve the request in proper time. 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  22 

 

5 OTHER TOOLS 

5.1 Experiment Result Store (ERS) 

The ERS is a component within the Experiment Execution subsystem that provides a 
temporary storage mechanism for experiments executed in an asynchronous manner. 
This component allows experimenters to retrieve the results of their experiments at 
their convenience. It should be noted that currently a result is removed from ERS once 
the experimenter retrieves it. 
Figure 7 shows the interactions that an experiment undergoes for the data to be stored 
in the ERS. In the first step (as numbered in Figure 7), the experimenter invokes the 
EEE to process their experiment. In the second step, the EEE will in turn invoke an IoT 
service to retrieve a dataset. This invocation of IoT service consists of invoking 
components like FIESTA-IoT Analytics toolkit or IoT-Registry. In the third step, the EEE 
will typically handle the request and store the result in the ERS. In the case of the FAT 
service, FAT will forward the result dataset directly to the ERS. The Experimenters can 
then call the ERS API to retrieve for results of their experiments. 
 

 
Figure 7: Experimenter interactions with ERS 

5.2 Experiment Data Receiver 

As a sample, FIESTA-IoT should provide an Experiment Data Receiver that should 
open a possibility for Experimenters to receive the data made available via EEE. 
Experimenters can use this tool on their dedicated servers to receive the data. The tool 
should be able to receive large data objects by the means of multipart file upload. 
Internally this tool should be able to then save the received data in particular location 
that is specified in the configuration of the tool.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  23 

 

5.3 UI Tools 

5.3.1 Experiment Editor 

The Experiment Editor is a UI tool that experimenters could use to model and edit an 
experiment. Once directed to the Experiment Editor, an experimenter would get a view 
as shown in Figure 8 with a rectangular block and a number (variable) of square blocks. 
The rectangle block contains: 

• a number denoting the number of FEMOs created by the experimenter,  
• a search icon that is used to find the FEMO when domain of interest (DOI) is 

provided and 
• an “+” icon that represents “add a FEMO”, i.e., to create new FEMO.  

Each square block represents a FEMO that the experimenter has previously created. 
The FEMO block consists of FEMO’s name, description, number of associated 
FISMOs and list of DOIs that are highlighted in different colour. Further, within each of 
these FEMOs’ specific “square block”, there would be three choices of operations that 
would represent (a) duplicate (b) edit, and (c) delete.  

 
Figure 8: Experiment Editor initial UI 
 
For the duplicate option, represented by the overlapping square boxes, by clicking on 
it would create a new FEMO with the same parameter settings as the original FEMO. 
The APIs that are used in the process are listed in the Scheduling API Specification 
Section 6.1.1.  
Every FEMO can be edited. This can be done by clicking on the FEMO block or by 
clicking the “edit” icon. Once the parameters are changed, the experimenter can 
commit the changes by clicking on the save button as shown in Figure 36 (Experiment 
Template FEMO). The Edit feature is applied at the following three levels of 
experiment: FEMO, FISMO and Query Control. Once the changes are made at any 
given level, the Experiment Editor notifies the EEE and ERM about the state change 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  24 

 

of the experiment. Before “saving” the changes, the experimenter could review the 
changes using the “Preview” (as shown in the Figure 9) option available beside “Save” 
option. 
 

 
Figure 9: FEMO XML Preview 
 
As stated before, an experimenter can delete an Experiment by clicking the “delete” 
icon on the FEMO block. This would trigger Experiment Editor to notify the EEE and 
ERM of any experiment termination. 

5.3.2 Experiment Management Console (EMC) 

The EMC is a UI where the experimenter could know about the status of their 
experiment(s). The EMC would list experiments associated to an experimenter. Upon 
selecting a specific FEMO, say “InriaExperiment” as in Figure 10, the details of the 
experiment should be presented to the experimenter. This includes FEMO details, 
associated FISMOs and other discoverable FISMOs. An experimenter should be able 
to see the experiment ID, name, description and domain of interest. On top of this, 
experimenters should have it handy the API through which they can download the 
experiment results that were not sent to them due to some errors. Towards this, a 
description or a footnote should be present that reflects this. 
The “Associated FISMO” tab shows the “meta” information about the FISMO. This 
“meta” information includes:  

• The jobID of the FISMO if it is scheduled, if it is not scheduled then “Not Yet 
Scheduled” information is displayed,  

• The name and description of the FISMO,  
• Experimenters can also start/stop a particular FISMO. By default, all the 

FISMOs would have status set to “Not Yet Scheduled”. The experimenter 
needs to explicitly start the FISMO to schedule it in the EEE. This would 
change the status to “Scheduled” in the UI, 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  25 

 

• The “Start Now” and “Stop Now” only provide experimenters the information to 
either start the schedule or if the schedule already exists in the EEE then 
pause the schedule of the respective FISMO.  

• The experimenters are be able to view the logs of the “Past executions”. This 
includes information like date-time when the FISMO was successfully 
executed with the size of the data consumed by the FISMO from the Meta 
Cloud. 

• An experimenter is able to delete any scheduled FISMO. In case a FISMO is 
not scheduled the experimenter is not able to delete the FISMO (i.e., they do 
not see the delete button). If deleted, the FISMO is deleted from the EEE 
along with all its references within EEE. 

• For “Subscribed” FISMOs (as such FISMOs are not owned), the relevant 
information is shown including ownership status as “subscriber” and option to 
unsubscribe the subscription.  

• Nevertheless, other than the above functionality experimenters should also 
poll for results.  

 
Figure 10: Experiment Management Console 
 
The EMC should also provide an option for the experimenters to subscribe to already 
available FISMOs within the FIESTA-IoT ecosystem. As the FISMOs are already 
defined, the experimenter is able to: 

• View the existing FISMO of choice,  
• Provide URL location where the results of the execution of the subscribed 

instance of the FISMO should be sent and 
• Subscribe the FISMO with the new URL location. 

Nonetheless, despite subscribing using the URL location, the experimenter should not 
be able to change any other parameter of the FISMO they subscribe to.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  26 

 

5.3.3 Reasoning tool (inference Tool) 

The FIESTA-IoT Reasoning component is an implementation of a semantic reasoner 
that works on top of the FIESTA-IoT platform. The reasoner engine was described in 
detail in Deliverable D3.6 [6], providing also details for the API for accessing the 
reasoning services. In this deliverable, we describe the UI developed within FIESTA-
IoT and accessed through the portal, so that it can be used as a tool for experimenters 
regardless if they are experts in semantics or not. Along with this description, the 
readers are advised to read the respective Section 3.3 of D3.6 to become more familiar 
with the architecture of the reasoning engine. Briefly, with the reasoning tool the 
experimenters will be able to create inference rules in the form of expressions “if 
(condition) then (result)” for example: 

• If (temperature) > (25degrees) then (notify_hot) 

• If (speed) < (30km/h) then (notify_traffic) 

• If (temperature) < (19degrees) and (humidity) > (60%) then (notify_unhealthy) 

5.3.3.1  Rule Creation 

An experimenter could create new rules in two ways: as a semantic expert or as a non-
semantic expert. These actions could be performed on the FIESTA-IoT portal, where 
there is a menu called “Reasoning”, which has 3 sub menus: Create Rule, Register 
Rule, and Execute Rule. Note that the tool can also be used as standalone via 
dedicated APIs, which were mentioned in [6]. 

 
Figure 11: Create Rule Screen 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  27 

 

5.3.3.1.1 Create new Rule – Semantic Expert 

The FIESTA-IoT Reasoning module provides a simple UI (see Figure 11) for enabling 
experimenters to easily write the rule on a text-view. For assisting the experimenters 
in this process, the UI also provides sensor information base on the selected quantity 
kind, so that experimenters can easily see information for the sensors, so that they 
have a more detailed view when they create their own rule. Here, information like 
sensor ID, sensor quantity kind, sensor unit of measurement, sensor latitude, sensor 
longitude or current sensor data is presented as shown in Figure 12 and Figure 13. 
 

 
Figure 12: Create new Rule when Semantic expert 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  28 

 

 
Figure 13: Create new Rule when Semantic expert –Text view input 
Experimenters can create a new simple rule with the “if then” logic within a query as 
shown in Table 6. In this example, we apply rule “if power_consumption>0.56 Watt 
then notify experimenter for high consumption”: 

Table 6: Query for creating a Rule 
@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> 
. 
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> . 
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . 
@prefix geo:  <http://www.w3.org/2003/01/geo/wgs84_pos#> . 
@prefix xsd:    <http://www.w3.org/2001/XMLSchema#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> . 
@prefix time: <http://www.w3.org/2006/time#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix reasoning: <https://fiesta-iot.eu/reasoning#> . 
(?observation rdf:type ssn:Observation), 
(?observation ssn:observedProperty ?observedProperty), 
(?observedProperty rdf:type m3-lite:Power), 
(?observation ssn:observationResult ?sensorOutput), 
(?sensorOutput ssn:hasValue ?obsValue), 
(?obsValue dul:hasDataValue ?dataValue), 
(?obsValue iot-lite:hasUnit ?unit), 
(?unit rdf:type m3-lite:Watt), 
greaterThan(?dataValue, "0.56"^^xsd:double) -> (?observation 
reasoning:announce "high_notification"^^xsd:string). 

 
 

After filling all the required information as in the UI (see Figure 12 and Figure 13), 
experimenters can click on the “save” button and store the rule in the FIESTA-IoT 
Reasoning database. Within FIESTA-IoT, by default all the created rules are public 
and available to all experimenters associated with FIESTA-IoT platform, hence all 
these rules can be re-used by other experimenters. When the rule is created 
successfully, the experimenter is redirected to the initial rule creation page, as shown 
in Figure 11. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  29 

 

5.3.3.1.2 Create new Rule when Non-Semantic expert 

The FIESTA-IoT Reasoning tool also provides a simple UI for experimenters who are 
not familiar with semantics. To create a new rule, such experimenters would click on 
the “Create new rule – Non-Semantic Expert” button. This option is much easier when 
an experimenter does not have Semantic knowledge and wants to create new rules 
with the IF THEN logic (see Figure 14). 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  30 

 

 
Figure 14: Create new Rule - Non-Semantic Expert 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  31 

 

An experimenter can click on the add-new-rule button “+ New Rule” to add a new rule 
or click on the remove icon “X” to remove it. 
The FIESTA-IoT Reasoning tool will use the information added by the experimenter for 
the selected quantity kind, and the rule logic in order to generate a rule template by 
creating a SPARQL query as shown in Table 7: 

Table 7: SPARQL query or a Rule 
@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> . 
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> . 
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . 
@prefix geo:  <http://www.w3.org/2003/01/geo/wgs84_pos#> . 
@prefix xsd:    <http://www.w3.org/2001/XMLSchema#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> . 
@prefix time: <http://www.w3.org/2006/time#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix reasoning: <https://fiesta-iot.eu/reasoning#> . 
(?observation rdf:type ssn:Observation), 
(?observation ssn:observedProperty ?observedProperty), 
(?observedProperty rdf:type m3-lite:Power), 
(?observation ssn:observationResult ?sensorOutput), 
(?sensorOutput ssn:hasValue ?obsValue), 
(?obsValue dul:hasDataValue ?dataValue), 
(?obsValue iot-lite:hasUnit ?unit), 
(?unit rdf:type m3-lite:Watt), 
greaterThan(?dataValue, "1"^^xsd:double) -> (?observation reasoning:announce 
"dangerous_notify"^^xsd:string).(?observation rdf:type ssn:Observation), 
(?observation ssn:observedProperty ?observedProperty), 
(?observedProperty rdf:type m3-lite:Power), 
(?observation ssn:observationResult ?sensorOutput), 
(?sensorOutput ssn:hasValue ?obsValue), 
(?obsValue dul:hasDataValue ?dataValue), 
(?obsValue iot-lite:hasUnit ?unit), 
(?unit rdf:type m3-lite:Watt), 
lessThan(?dataValue, "1"^^xsd:double) -> (?observation reasoning:announce 
"lowpower_notify"^^xsd:string). 
 

 
When an Experimenter clicks on the “Save” button, this rule will be stored in the 
FIESTA-IoT platform and then it will be public and re-usable by other experimenters. 

5.3.3.1.3 Details of Rules 

On the list of rules (see Figure 11) available on the FIESTA-IoT Reasoning, an 
experimenter can view (for example Rule 14 as shown in the Figure 15) the details of 
any rule by clicking on the “View” icon. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  32 

 

 
Figure 15: Example of Rule details 

5.3.3.1.4 Edit a Rule 

The function for editing a rule is available only to those experimenters that have created 
the particular rule. This means, an experimenter is not allowed to change a rule created 
by other experimenters for security purposes. 
On the screen showing the list of rules (see Figure 11)  or on the rule details screen 
(see Figure 15), when an experimenter clicks on the “Edit” button, the screen for editing 
rules will be shown as in Figure 16 and Figure 17 (Note that in the Figure 17 an 
experimenter can edit the rule in the provided textbox): 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  33 

 

 
Figure 16: Edit Rule Information 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  34 

 

 
Figure 17: Edit Rule content 
 

5.3.3.2 Rule Registration 

After creating the rule template, an experimenter needs to first register the rule on a 
selected sensor before executing it. This can be done through the “Reasoning” menu 
on the portal by selecting the “Register Rule: sub menu. The following Figure 18 is 
shown: 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  35 

 

 
Figure 18: Rule Registration home 
For security/privacy reasons, each experimenter can only see his own registered rules 
and not those of other experimenters. 

5.3.3.2.1 Register a rule 

When an experimenter clicks on the “+ Create new Register Rule” button, the Figure 
19 is shown, where the experimenter can add information, such as the description of 
the registered rule, the quantity kind and the sensor upon which the rule will be 
executed, and also select the rule template to be used for this registration: 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  36 

 

 
Figure 19: Register Rule- Available Rules 
As Figure 19 shows, an experimenter can select the rule template from the dropdown 
menu that shows all the created rules on the platform. By selecting one rule, its detailed 
information is shown in the “Rule content” field, as shown in Figure 20. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  37 

 

 
Figure 20: Register Rule - Detail Rule content 
After selecting the rule template, the next step for the experimenter is to select the 
sensor ID to register (the quantity is pre-filled according to the rule information) as 
shown in Figure 21. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  38 

 

 
Figure 21: Register Rule - Select Sensor 
 
After filling the required information on the form and clicking the “Save” button, the rule 
registration functionality is finished and the new rule is registered and available for 
execution. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  39 

 

5.3.3.2.2 Detail Rule registration 

Another functionality on the initial screen that lists the existing rule registrations (as 
shown in Figure 11) is to see the details of a registered rule, by clicking on the “detail” 
icon (as shown in Figure 22). 

 
Figure 22: Register Rule – detailed information 

5.3.3.2.3 Edit a Rule registration 

When experimenters want to edit a rule registration, they can click on the “Edit” button 
on the detail rule registration page or on the “edit” icon on the list of rule registrations 
screen. Then, the following is shown (see Figure 23): 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  40 

 

 
Figure 23: User Interface for editing a rule registration 
The Experimenter can then edit the details of the registered rule, i.e. name, description, 
select new rule, select another sensor and then click “Save” to update all information 
on the FIESTA-IoT platform. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  41 

 

5.3.3.3 Rule Execution 

The final step after creating and registering a rule is to execute it. The FIESTA-IoT 
platform provides three main functions for creating a “New execution”, performing a 
“Re-execution” and viewing the details of an execution.  
A Rule execution is the function where the registered rule is executed upon the input 
sensor data, in order to create some inference data. The home screen of rule execution 
is shown in Figure 24 

 
Figure 24: Rule Execution Home page 
 

5.3.3.3.1 Create a New Execution 

When an experimenter clicks on the “+ New Execution” button, the following form is 
shown (see Figure 25): 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  42 

 

 
Figure 25: User Interface for creating a new Rule execution 
In this form, the Experimenter can create a new execution, by selecting a registered 
rule and setting the “Time for execution”, which can be either in the current 
measurement or in the measurements within a time range. 

5.3.3.3.2 New execution with current time 

This rule execution happens when the experimenter selects the “Current” option and 
clicks on the “Save” button. Then, the FIESTA-IoT Reasoning module will execute this 
registered rule (sensor, rule), giving the result of the execution, which can be either 
“true” (success) or “false”, together with other details, such as the start, end time, 
sensor id, rule content, original data, inference data, and full data. 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  43 

 

5.3.3.3.3  New execution with period or range of time 

When an experimenter selects the “Range” execute option, he will be able to select 
the starting and ending date of the measurements to be considered in this rule, as 
shown in Figure 26. 

 
Figure 26: Execute Rule on sensor base on specific time 
The FIESTA-IoT Reasoning will execute a SPARQL query to retrieve sensor data as 
shown in Table 8: 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  44 

 

Table 8: SPARQL Query 
PREFIX iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> 
PREFIX m3-lite: <http://purl.org/iot/vocab/m3-lite#> 
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#> 
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> 
PREFIX time: <http://www.w3.org/2006/time#> 
 
SELECT  ?sensingDevice ?dataValue ?dateTime ?observation 
?sensorOutput ?obsValue ?instant 
WHERE { 
?observation ssn:observedBy ?sensingDevice . 
VALUES ?sensingDevice {  
<https://platform.fiesta-iot.eu/iot-registry/api/resources/Ur7Q-
GLgxiLsfK4ZhXffEryue052DxDQzb8jxqKMPyLJZUiTr-
ZpAj1ZK_hi302o5gp8V6Fe1a2jEzg_STnJkUCQHp8f7qAg1DiohqUnfcll3289Lvfcu
RmXiDPfZROl>} . 
?observation ssn:observationResult ?sensorOutput . 
?sensorOutput ssn:hasValue ?obsValue . 
?obsValue dul:hasDataValue ?dataValue . 
?observation ssn:observationSamplingTime ?instant . 
?instant time:inXSDDateTime ?dateTime . 
  FILTER (  
       (xsd:dateTime(?dateTime) > xsd:dateTime("2017-09-
16T23:00:00Z")) 
    && (xsd:dateTime(?dateTime) < xsd:dateTime("2017-09-
17T23:00:00Z")) 
    ) . 
}ORDER BY ?sensingDevice ASC(?dateTime) 

 

5.3.3.3.4 Re-Execution 

When an experimenter wants to repeat an execution of the rule, he can just click on 
the “Re-execute” button on the list of executions. Then, a similar form as with the rule 
execution will be shown (see Figure 27) and the user will be allowed to select if he 
wants to re-execute the rule on the current measurement or on a range of 
measurements. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  45 

 

 
Figure 27: Re-Execute Rule  

5.3.4 FIESTA-IoT Acquisition Toolkit 

Other than being a web service, the FAT can also be accessed through a web UI. This 
interface allows an experimenter to interact with the FAT toolkit visually for single 
experiments. The page mainly consists of three tabs (see Figure 28). The first being 
the “Input”. This allows the user to provide the SPARQL query for the dataset and the 
methods/parameters to apply on it (see Figure 29). Once this is submitted the result is 
displayed in the “Result” tab (see Figure 30). A plot for certain methods will be provided 
in the third tab, which is under development. 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  46 

 

 
Figure 28: Analytics Toolkit Tabs  
 

 
Figure 29: Analytics Input Tab 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  47 

 

 
Figure 30: Analytics Toolkit Result  
 

5.3.5 Experiment/Testbed Monitoring Tool  

The Testbed Monitoring Tool is intended to provide FIESTA-IoT users with information 
about the data that is sent by testbeds and can be used by experimenters via the 
FIESTA-IoT portal. 

5.3.5.1 UI Specification 

The Testbed Monitoring is embedded in the portal as an iframe and can be used as 
every other component of the portal. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  48 

 

 
Figure 31: The Testbed Monitoring Tool embedded in the FIESTA-IoT portal 
As seen in Figure 31 the Testbed Monitoring can be found under the Tools section as 
Testbed monitoring. 
Its start page is the overview of all monitored testbeds. Here, the locations of the 
testbeds can be seen in a map and a table, which lists their name, the number of active 
sensors and total number of sensors, and the contact for each testbed. Here the total 
number of sensors means all registered sensors in the FIESTA-IoT platform belonging 
to this testbed and active sensors are resources that have an observation in the last 
24 hours. 
By clicking on one of a testbed, a detailed view lists all its underlying sensors and their 
locations in the map. For every sensor, the internal ID of the sensor used by the 
Monitoring Tool, the quantity kind, the last observation, the unit and the location are 
listed. The quantity kind and unit are using the m3-lite Taxonomy [13]. If a sensor is 
clicked, a modal view pops up, and shows a graph of the latest observations of this 
sensor and the sensor ID that is used by interacting with the IoT-Registry. 
FIESTA-IoT admins can open the settings view where testbeds can be enabled for 
showing in the UI or disabled again. The Monitoring Tool provides a notification system. 
This can be used to receive a notification mail, when a testbed reaches a predefined 
state, e.g., the number of active sensors reaches a threshold. Experimenters can use 
this if they find a testbed with problems and want to get informed when it is ready to be 
used again. By the time writing this deliverable, this function was not yet implemented. 
More detailed information about the usage of the Monitoring Tool can be found in 
Deliverable 3.6 [6]. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  49 

 

5.3.5.2  Implementation 

The system is integrated into the platform as an additional component. 

 
Figure 32: Testbed Monitoring component in the FIESTA-IoT Platform 
As seen in Figure 32, the monitoring component connects to the Mongo DB and uses 
it for storing its data. It is also connected to the IoT-Registry in order to querying data 
of the platform. In addition, the monitoring tool asks the OpenAM service to use the 
information of every logged-in user to get the role of it and adjust the view. 

5.3.5.2.1 General Procedure 

The general procedure of the Monitoring tool is the following. In the beginning the 
configuration is read and the components like tasks, the database connection and the 
webserver are properly configured. 
In the initialisation phase the background tasks will be started. These tasks are mainly 
to query the IoT-Registry for the relevant information like testbeds, resources and 
observations. In the future, tasks regarding analysis will be started in the beginning. 
Afterwards the Flask server is started for serving the GUI and the API. 

5.3.5.2.2 Bootstrapping 

The bootstrapping is done by the tasks that are related to the IoT-Registry. In this 
phase, the database will be cleaned when it is configured to do so. If not, the database 
will be searched for the latest observation time in order to properly set up the query for 
following observations. The tasks for updating testbeds and resources information will 
be activated. They will retrieve all relevant data from the IoT-Registry and store it into 
the database. The tasks are configured to be run on an interval base. When this is 
done, the task for querying observations is done. This task will use either the latest 
stored observation or a pre-configured time span in order to start the querying for 
observations. The retrieval of observations is done in smaller steps until it reaches the 
actual time and starts normal interval based updates. After this initial bootstrap, the 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  50 

 

database is filled with the initial data and tasks like analysis and the webserver will be 
started. 

5.3.5.2.3 Querying the IoT-Registry 

As the Monitoring tool is deployed on the same machine as the IoT-Registry, for 
retrieving the testbeds information, the IoT-Registry API are used to directly retrieve 
the testbed names and IRIs (Internationalized Resource Identifier). 
The gathering of all resources and observations is done via executing SPARQL 
queries. An example query to retrieve all sensors is provided in Table 9 

Table 9: SPARQL Query 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>  
PREFIX iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>  
PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>  
SELECT ?s ?qkt ?st ?ut ?lat ?long ?depl WHERE {  
    ?s iot-lite:hasQuantityKind ?qk .  
    ?qk a ?qkt .  
    ?s a ?st .  
    ?s iot-lite:hasUnit ?u .  
    ?u a ?ut .  
    OPTIONAL {  
        ?s ssn:hasDeployment ?depl .  
        ?s ssn:onPlatform ?plat .  
        ?plat geo:location ?p .  
        ?p geo:long ?long;  
        geo:lat ?lat  
    } . 
    OPTIONAL {  
        {  
            ?s iot-lite:isSubSystemOf ?dev .  
            ?dev ssn:hasDeployment ?depl .  
            ?dev ssn:onPlatform ?plat .  
            ?plat geo:location ?p .  
            ?p geo:long ?long;  
            geo:lat ?lat  
        }  
        OPTIONAL {  
            ?dev ssn:hasSubSystem ?s .  
            ?dev ssn:hasDeployment ?depl .  
            ?dev ssn:onPlatform ?plat .  
            ?plat geo:location ?p .  
            ?p geo:long ?long;  
            geo:lat ?lat  
        } .  
    } .  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  51 

 

    FILTER(bound(?plat)) .  
} 
 

Using the query, a search is performed for sensors that have a unit and a quantity kind. 
The sensor also has to have a testbed deployment and has to be on a platform that 
has a location. The deployment is used to determine afterwards to which testbed the 
sensor belongs. For every sensor the type, the unit, the quantity kind, the testbed and 
the location are stored into the database. Table 10 lists a sample query for retrieving 
observations: 

Table 10: SPARQL Query 
Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>  
Prefix time: <http://www.w3.org/2006/time#>  
Prefix xsd: <http://www.w3.org/2001/XMLSchema#>  
Prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>  
select ?s ?ti ?dv where {  
    ?o a ssn:Observation .  
    ?o ssn:observedBy ?s .  
    ?o ssn:observationResult ?or .  
    ?or ssn:hasValue ?ov .  
    ?ov dul:hasDataValue ?dv .  
    ?o ssn:observationSamplingTime ?ot .  
    ?ot time:inXSDDateTime ?ti .  
} 

 
Using the query, all observations are collected. For each observation: the related 
sensor, the time and the value is also gathered. The observations will be stored for 
every sensor in an array. For each observation, the value and the timestamp are only 
stored, other meta information like unit is retrieved from the sensor itself. 
To limit the time to a specific interval, the IoT-Registry API supports setting the time 
boundaries per URL query parameters in the following way: 
POST <OBSERVATIONS_QUERY_URL>?from=<FROM>&to=<TO> 

Where the query url is /iot-registry/queries/execute/observations and 
<FROM> and <TO> are timestamps in the form ‘YYYYMMDDHHmm’. See [7] for more details. 

5.3.5.2.4 Database operations 

The mongoDB is accessed via the pymongo module that maps the basic operations 
provided by the database to python. The tasks that will query the IoT-Registry are using 
the database to store all information that will be later consumed by other components 
of the tool. 
The webserver that provides the GUI and the API is using the database to get the 
information, transform it in the required form and serve it. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  52 

 

5.3.5.2.5 UI tasks 

The webserver fulfils two kinds of operations. The first is to provide the web sites in 
order to see the overview of all operations and also to present the detailed view of any 
testbed. The other is to provide an API for the data that is stored into the database. 

5.3.5.2.6 Requesting OpenAM 

In order to generate a specific view per user role in the UI, the monitoring tool uses the 
security component of the FIESTA-IoT platform. The UI is embedded in the portal UI 
that is protected by the security component. After a user is logged-in, a header is set 
for every further call. The monitoring tool uses this header in order to query the role of 
this specific user. After this, the required UI is compiled and delivered. 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  53 

 

6 EXPERIMENTATION SERVICES AND API SPECIFICATION 

6.1 Experiment Deployment Services 

Below we list the experiment deployment related services provided by EEE. These 
services are services that ensures and target scheduling aspects, subscription and 
polling.  

6.1.1 Scheduling APIs 

The /startFISMOExecution starts the schedule as specified in the FISMO object. 
This API upon successful starting returns {“response”: “Job Scheduled”, 
“jobID”: <JobID>}. The jobID and the status are stored in a database. The API 
reads the FISMO object associated with the FISMOID and its QuerySchedule attribute 
that contains scheduling information. The following scheduler services can be invoked 
using a path https://<HOST>:<PORT>/schedulerServices/scheduler/<API> 

API /startFISMOExecution 

Description  This API is used to start execution of the experiment service (FISMO). 
This API provides a jobID to the FISMO upon the successful scheduling 
on the Meta Cloud. The API uses timeSchedulePayload to define the 
startTime, stopTime and periodicity of the job to be executed. 

Method POST 

Input HeaderParam: String fismoID 
HeaderParam: String femoID 
HeaderParam: String iPlanetDirectoryPro 
HeaderParam: String timeSchedulePayload 
The timeSchedulePayload is a JSON string that should contain 
startTime, stopTime and periodicity. A sample of such JSON is 
{"startTime":"2016-09-15T13:57:00.0Z", "stopTime":"2016-
09-15T16:30:00.0Z","periodicity":60}. Here startTime and 
stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z’) and 
the periodicity is in seconds. The default value is set to “”. The empty 
string is interpreted as 0. 

Output {“response”: “Job Scheduled”, “jobID”: <JobID>} is returned 
as a Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful. 
If the status is scheduled then jobID is returned. 

Produces application/json  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  54 

 

Errors • “NoSuchServiceModelObjectID”: FISMOID is incorrect or 
does not exist. 

• “InvalidTimeScheduleStructure”: timeSchedulePayload 
JSON structure is incorrect or does not exist. 

• “UnParsableDate”: either startTime or stopTime is not in 
the correct format and thus cannot be parsed in the required 
format. 

• “SchedulerException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute” 

 
To retrieve the jobIDs for a particular already scheduled FISMO, 
/getJobIDsfromFISMOID is used.   
 

API /getJobIDsfromFISMOID 

Description  This API is used to get the jobID of a particular already scheduled 
FISMO. Note that this JobID is the ID given by the Scheduler to the 
FISMO execution. 

Method GET 

Input HeaderParam: String fismoID 
HeaderParam: String iPlanetDirectoryPro 

Output {“jobIDs”: [<JobID1>, <JobID2>..]} is returned as a Response 
if successful. Here the JobIDs is a list of job IDs associated to the 
FISMOID. A list is returned because there might be subscribers who 
might have subscribed to a particular FISMOID. Each subscription to a 
FISMOID, provides a new jobID to the subscription. This is because 
we consider each subscription to be different. {“response”: “No 
Jobs”} is also returned if there is no Jobs found for a particular 
FISMO. {“response”: <ERROR>} is returned as a Response if 
unsuccessful. 

Produces application/json  

Errors • “NoSuchServiceModelObjectID”: FISMOID is incorrect or 
does not exist 

• “SchedulerException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  55 

 

 
To retrieve jobID from a given fismoID, userID and femoID, 
/getJobIDfromFISMOIDUserIDandFEMOID is used. 
 

API /getJobIDfromFISMOIDUserIDandFEMOID 

Description  This API is used to get the jobID associated to a particular fismoID, 
userID and femoID triple. 

Method GET 

Input HeaderParam: String fismoID 
HeaderParam: String femoID 
HeaderParam: String iPlanetDirectoryPro 
QueryParam: Boolean owner (default value true) 

Output {“jobID”: <JobID>} is returned as a Response if successful. 
{“response”: “No Job ID”} is also returned if there is no JobID 
was found for the input pair. {“response”: <ERROR>} is returned as 
a Response if unsuccessful. For the possible list of error please see the 
Errors row below. 

Produces application/json  

Errors • “NoSuchServiceModelObjectID”: FISMOID is incorrect or 
does not exist 

• “NoSuchExperimentID”: FEMOID is incorrect or does not exist 
• “PersistenceException”: is a generic error returned by the 

Quartz scheduler. 
• “ImplementationException”: is a generic error however 

with respect to this API it would mean “Failed to execute the 
API” 

 
To retrieve the details about a jobID, /getJobIDDetails is used. 
 

API /getJobIDDetails 

Description  This API is used to get the details associated to a particular jobID. 

Method GET 

Input HeaderParam: String jobID 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  56 

 

HeaderParam: String iPlanetDirectoryPro 

Output {“JobID”: <JobID>, “Group”: <GroupID>, “timeSchedule”: 
{“startTIme”: <startTime>, “stopTime”:<stopTime>, 
“periodicity”:<periodicity>}, “status”:<status>} is 
returned as a Response if successful. Here the groupID is the 
FISMOID and status is a job status from the list [BLOCKED, 
COMPLETE, ERROR, NONE, NORMAL, PAUSED]. {“response”: “No 
Job information found”} is also returned if there is no Jobs data. 
{“response”: <ERROR>} is returned as a Response if unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler. 
• “ImplementationException”: is a generic error however 

with respect to this API it would mean “Failed to execute the 
API” 

 
To retrieve the details about all jobIDs, /getAllJobIDDetails is used. This API is 
similar to the previous one. 
  

API /getAllJobIDDetails 

Description  This API is used to get the details of all the jobIDs. 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro 

Output {“JobsScheduled”: [{“jobID”: <JobID1>, “Group”: <GroupID>, 
“startTIme”: <startTime>, “stopTime”: <stopTime>, 
“periodicity”: <periodicity>, “status”: <status>}..]} is 
returned as a Response if successful. Here the groupID is the FISMOID 
and the status is a job status from the list [BLOCKED, COMPLETE, 
ERROR, NONE, NORMAL, PAUSED]. {“response”: “No Jobs 
Scheduled”} is also returned if there is no Jobs data. {“response”: 
<ERROR>} is returned as a Response if unsuccessful.  

Produces application/json  

Errors • “SchedulerException”: is a generic error returned by the 
Quartz scheduler. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  57 

 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 
Further, to get all the jobIDs for all the scheduled FISMOs use /getJobID 
 

API /getJobIDs 

Description  To API is used to get all the existing jobIDs. 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro 

Output {“jobIDs”: [{“jobID”: <JobID1>, “FISMOID”: <FISMOID>}..]} 
is returned as a Response if successful. Here the JobID is the job ID 
of the scheduled FISMOID. {“response”: “No Jobs Scheduled”} 
is also returned if there is no Jobs data. {“response”: <ERROR>} is 
returned as a Response if unsuccessful.  

Produces application/json  

Errors • “SchedulerException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however 
with respect to this API it would mean “Failed to execute the API” 

 
The /stopJobExecution stops the job that was already started using the previous 
defined start APIs. This API takes as an input the JobID and stops the job by deleting 
it from the scheduler. 

API /stopJobExecution 

Description  The API is used to pause the execution of a particular job 

Method POST 

Input HeaderParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 

Output {“response”: “Job paused successfully”} is returned as a 
Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  58 

 

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “ImplementationException”: is a generic error however 

with respect to this API it would mean “Failed to execute the 
API” 

 
If a job is paused, it can also be resumed. To resume a job /resumeJobExecution is 
used. 
 

API /resumeJobExecution 

Description  To API is used to resume the execution of a particular job 

Method POST 

Input HeaderParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 

Output {“response”: “Job resumed successfully”} is returned as a 
Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API” 
 
The EEE also provide APIs to reschedule, delete jobs and identify what are the 
currently executing jobs. This is achieved using /rescheduleJob, 
/deleteScheduledJob, /deleteAllScheduledJobs and 
/getCurrentlyExecutingJobs. 
 

API /rescheduleJob 

Description  This API is used to change the schedule of an already scheduled Job. 

Method POST 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  59 

 

Input HeaderParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 
HeaderParam: String timeSchedulePayload 
The timeSchedulePayload is a JSON string that should contain 
startTime, stopTime and periodicity. A sample of such JSON is 
{"startTime":"2016-09-15T13:57:00.0Z", "stopTime":"2016-
09-15T16:30:00.0Z","periodicity":60}. Here startTime and 
stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z’) and 
the periodicity is in seconds. 

Output {“response”: “Job rescheduled successfully”} is returned as a 
Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API” 
 

API /deleteScheduledJob 

Description  This API is used to remove a particular scheduled job from the Scheduler 

Method POST 

Input HeaderParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 

Output {“response”: “Job deleted successfully”} is returned as a 
Response if successful. {“response”: “No Job found”} could also 
be returned. {“response”: <ERROR>} is returned as a Response if 
unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “PersistenceException”: is a generic error returned by the 

Quartz scheduler. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  60 

 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

API /deleteAllScheduledJob 

Description  This API is used to remove all scheduled job from the Scheduler. This 
API will be protected and will be only available to the FIESTA-IoT 
administrators. 

Method POST 

Input HeaderParam: String iPlanetDirectoryPro 

Output {“response”: “All Job deleted successfully”} is returned as a 
Response if successful. {“response”: “No Jobs found”} could also 
be returned. {“response”: <ERROR>} is returned as a Response if 
unsuccessful.  

Produces application/json  

Errors • “SchedulerException”: is a generic error returned by the Quartz 
scheduler 

• “PersistenceException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

API /getCurrentlyExecutingJobs 

Description  This API is used to get all the jobs that are currently being processed. 
Note that this is different from listing all jobs that are available in the 
persistence store of the scheduler. 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro 

Output {“response”: “Currently Executing Jobs.”, “Jobs”: 
[<jobs>..]} is returned if successful. {“response”: <ERROR>} is 
returned as a Response if unsuccessful.  

Produces application/json  

Errors • “SchedulerException”: is a generic error returned by the Quartz 
scheduler 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  61 

 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 
To support ERM and provide single point of delete and update, EEE provides a set of 
triggers that should be used by the ERM to notify EEE whenever an experimenter 
deletes, reschedules or update a FISMO. Within this scenario, the APIs are 
/fISMOUpdateTrigger, /deleteFismoJobTrigger, 
/deletefismoJobTriggerlist and /deleteScheduledJobsOfFISMO 
 

API /fISMOUpdateTrigger 

Description  This API is used to update a particular FISMO if it is already scheduled 
on the EEE. 

Method POST 

Input Body: FISMO fismo 

Output {“response”: “Job rescheduled successfully”} is returned as 
a Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json  

Errors • The FISMO object is null 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “ImplementationException”: is a generic error however 

with respect to this API it would mean “Failed to execute the 
API” 

 

API /deleteFismoJobTrigger 

Description  This API is used to delete a particular FISMO if it is already scheduled 
on the EEE. 

Method POST 

Input HeaderParam: String fismoID 

Output {“response”: “Job deleted successfully”} is returned as a 
Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  62 

 

Produces application/json  

Errors • “SchedulerException”: is a generic error returned by the 
Quartz scheduler 

• “PersistenceException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however 
with respect to this API it would mean “Failed to execute the 
API” 

 

API /deletefismoJobTriggerlist 

Description  This API is used to delete list of FISMOs if it is already scheduled on 
the EEE. 

Method POST 

Input Body: String fismoIDs 
In JSONArray format 

Output {“response”: “FISMOs deleted successfully”} is returned as a 
Response if successful. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json  

Errors • No FISMOs Specified. 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “PersistenceException”: is a generic error returned by the 

Quartz scheduler. 
• “ImplementationException”: is a generic error however 

with respect to this API it would mean “Failed to execute the 
API” 

 

API /deleteScheduledJobsOfFISMO 

Description  This API is used to delete jobs associated to a particular FISMO. 

Method POST 

Input HeaderParam: String fismoIDs 
HeaderParam: String iPlanetDirectoryPro 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  63 

 

Output {“response”: “All jobs associated to Fismo are deleted”} 
is returned as a Response if successful. {“response”: <ERROR>} 
is returned as a Response if unsuccessful.  

Produces application/json  

Errors • “SchedulerException”: is a generic error returned by the 
Quartz scheduler 

• “PersistenceException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

6.1.2 Subscription APIs 

The subscription services (/subscribeToFISMOReport and 
/unsubscribeToFISMOReport to the discoverable FISMOs) are used so that an 
experimenter can subscribe to existing discoverable FISMOs or unsubscribe from 
already subscribed FISMO. The following subscription based services can be invoked 
using a path https://<HOST>:<PORT>/schedulerServices/subscription/<API> 
 

API /subscribeToFISMOReport 

Description  This API is used to subscribe to a particular FISMO’s report 

Method POST 

Input HeaderParam: String fismoID 
HeaderParam: String userID 
HeaderParam: String femoID 
HeaderParam: String iPlanetDirectoryPro 
HeaderParam: String experimentOutput 
Here the experimentOutput is the ExperimentOutput attribute of the 
FISMO in the JSON ({“url”: <url>}). A sample of currently valid 
experimentOutput is {"url":"http://myExperiment.com"}. 
Further, the userID is the ID of the experimenter, and the femoID is 
the ID of the experiment to which subscription is to be associated to.  

Output {“response”: “subscribed”, “FISMOID”: <FIMSOID>, “JobID”: 
<JobID>} is returned as a Response if successful. {“response”: 
<ERROR>} is returned as a Response if unsuccessful. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  64 

 

Produces application/json  

Errors • “NoSuchServiceModelObjectID”: FISMOID is incorrect or 
does not exist 

• “NoSuchUserID”: userID is incorrect or does not exist 
• “NoSuchExperimentID”: FEMOID is incorrect or does not exist 
• “AlreadySubscribed”: FISMOID is already subscribed and 

associated to the userID. 
• “InvalidURL”: invalid url  
• “InvalidExperimentOutputJson”: invalid Experiment 

Output Json 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API or 
subscription failed” 

 

API /unsubscribeToFISMOReport 

Description  This API is used to unsubscribe from a particular FISMO’s report 

Method POST 

Input Header Param: String fismoID 
HeaderParam: String iPlanetDirectoryPro 
Header Param: String femoID 
femoID is ID of the experiment to which subscription is to be associated 
to. 

Output {“response”: “Unsubscribed”} is returned as a Response if 
successful. {“response”: <ERROR>} is returned as a Response if 
unsuccessful.  

Produces application/json  

Errors • “NoSuchServiceModelObjectID”: FISMOID is incorrect or 
does not exist 

• “NoSuchUserID”: userID is incorrect or does not exist 
• “NoSuchExperimentID”: FEMOID is incorrect or does not exist 
• “SubscriptionNotFound”: FISMOID is not associated to the 

userID. 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API or 
un-subscription failed” 

 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  65 

 

6.1.3 Polling APIs 

A polling service is a service using which an experimenter can run the FISMO once 
without actually scheduling it. The following polling based services can be invoked 
using a path https://<HOST>:<PORT>/schedulerServices/polling/<API> 

API /pollForReport 

Description  This API is used to invoke a previously defined FISMO. A call to this 
API will only produce one Resultset that will be sent to the URL 
specified in the ExperimentOutput parameter. 

Method POST 

Input HeaderParam: String fismoID 
HeaderParam: String femoID 
HeaderParam: String iPlanetDirectoryPro 
QueryParam: Boolean owner (default value true). This 
parameter basically tells the EEE if it has to look into subscriber realm 
or the owner realm 

Output {“response”: “Polled Successfully”: “jobID”: <JOBID>} is 
returned as a Response if successful. Here JobID is the jobID of the 
generated for the particular poll. Experimenters are advised to keep 
this jobID in their record. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json 

Errors • Something went wrong 
• FIESTA-IoT Analytics tool was not invoked correctly. 

Thus polling failed. 
• “NoSuchServiceModelObjectID”: FISMOID is incorrect or 

does not exist 
• “NoSuchExperimentID”: FEMOID is incorrect or does not exist 
• “InvalidURL”: invalid url  
• “InvalidExperimentOutputJson”: invalid Experiment 

Output Json 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API” 
 
 
API /dynamicPollForReport 

Description  This API is used to invoke a previously defined FISMO. A call to this API 
will only produce one Resultset that will be sent to the URL specified in 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  66 

 

the ExperimentOutput parameter. However, this API is different from 
previous API with respect to the possibility of providing parameter 
values. This is useful in the case of mobile applications. 

Method POST 

Input HeaderParam: String fismoID 
HeaderParam: String femoID 
HeaderParam: String iPlanetDirectoryPro 
QueryParam: Boolean owner (default value true) 
QueryParam: String geoLatitude (default value “0”) 
QueryParam: String geoLongitude (default value “0”) 
QueryParam: int intervalNowToPast (default value 0) 
QueryParam: Long fromTime (default value “0L”) 
QueryParam: Long toTime (default value “0L”) 
Body: String Others 
This is a JSON object represented as a string. The default value is “{}”. 
However, experimenters need to set the key value pair depending on the 
query. A JSON object the experimenters need to set is  

{ 
"KATInput": {"Method": [""], "Parameters":[""]}, 
"otherParameters": {<key>:<value>} 
} 

Here, KATInput essentially reflects the input needed for the FIESTA-IoT 
Analytics Toolkit, while otherParameters reflect the dynamic attributes 

Output {“response”: “Dynamically Polled Successfully”: “jobID”: 
<JOBID>} is returned as a Response if successful. Here JobID is the 
jobID of the generated for the particular poll. Experimenters are advised 
to keep this jobID in their record. {“response”: <ERROR>} is returned 
as a Response if unsuccessful.  

Produces application/json 

Errors • Something went wrong 
• FIESTA-IoT Analytics tool was not invoked correctly. 

Thus, polling failed. 
• “NoSuchServiceModelObjectID”: FISMOID is incorrect or does 

not exist 
• “NoSuchExperimentID”: FEMOID is incorrect or does not exist 
• “JSONException”: invalid JSON  
• “QueryException”: invalid query and Parameters 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  67 

 

• “InvalidExperimentOutputJson”: invalid Experiment 
Output Json 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

6.2 Experiment Management Services  

In this section, we list the experiment management APIs that are provided by the EEE 
and the testbed status Monitoring services.  

6.2.1 EEE Monitor APIs 

Here we list all the APIs that provide “meta” information about an experiment and the 
associated services (FISMOs). The following monitoring based services can be 
invoked using a path 
https://<HOST>:<PORT>/schedulerServices/monitoring/<API> 

API /getJobIDStatus 

Description  This API is used to get the status of a particular jobID, i.e., one from the 
list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED] 

Method GET 

Input QueryParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 

Output {“JobID”: <JobID>, “status”: <STATUS>} is returned as a 
Response if successful. Here STATUS is one from the list as described 
above. Other messages that are returned are {“response”: “Job not 
Scheduled”} {“response”: <ERROR>} is returned as a Response if 
unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “SchedulerException”: is a generic error returned by the 

Quartz scheduler 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API” 
 

API /getAllSubscribersOfFISMOID 

Description  This API is used to get a list of subscribers (or the experimenters) that 
are using a particular FISMO. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  68 

 

Method GET 

Input QueryParam: String fismoID 
HeaderParam: String iPlanetDirectoryPro 

Output {“UserIDs”: [<UserID1>, <UserID2>,..]} is returned as a 
Response if successful. Here, the “UserIDs” is a list of userIDs that have 
subscribed to the particular FISMO. It is also possible to get an empty 
JSON object if there is no user that has subscribed to the given 
FISMOID. {“response”: <ERROR>} is returned as a Response if 
unsuccessful.  

Produces application/json  

Errors • “NoSuchServiceModelObjectID”: FISMOID is incorrect or does 
not exist 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

API /getAllSubscriptionsOfExperimenter 

Description  This API is used to get a list of user subscriptions irrespective of the 
experiment 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro 

Output {“FISMOIDs”: [<FISMOID1>, < FISMOID2>,..]} is returned as a 
Response if successful. Here, the “FISMOIDs” is a list of FISMOIDs that 
the user has subscribed. It is also possible to get an empty JSON object 
if there are no FISMOIDs that a user has subscribed. {“response”: 
<ERROR>} is returned as a Response if unsuccessful.  

Produces application/json  

Errors • “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

API /getMySubscriptionsforExperiment 

Description  This API is used to get a list of user subscriptions with respect to a 
particular experiment 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  69 

 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro  
QueryParam: String femoID 

Output {“Subscriptions”: [{“jobID”: <jobID>, “fismoID”: 
<FISMOID1>},..]} is returned as a Response if successful. Here, the 
“Subscriptions” is a list of jobIDs and FISMOIDs that the user has 
subscribed. It is also possible to get an empty JSON object if there are 
no subscriptions for a particular experiment by the user. {“response”: 
<ERROR>} is returned as a Response if unsuccessful.  

Produces application/json  

Errors • “NoSuchUserID”: userID is incorrect or does not exist 
• “NoSuchExperimentID”: FEMOID is incorrect or does not exist 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API or 
Subscription Failed” 

 

API /getJobExecutionLog 

Description  This API is used to get the ExecutionLog of a Job. The return is a JSON 
array with “executionTime” and “dataConsumed” information. Here 
executionTime is the time it took to successfully execute the Job. 

Method GET 

Input QueryParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 

Output {“ExecutionLog”: [{“executionTime”: <time1>, 
“dataConsumed”: <dataConsumed1>}, {“executionTime”: 
<time2>, “dataConsumed”: <dataConsumed2>},..]} is returned as 
a Response if successful. Here, the “ExecutionLog” is a log of 
successful executions of jobID. It is also possible to get an empty JSON 
object if there is no ExecutionLog for the jobID. {“response”: 
<ERROR>} is returned as a Response if unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API” 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  70 

 

6.2.2 EEE Accounting APIs 

Here we list all the APIs that provide counting of the number of times experiments 
associated to an experimenter have been executed and the number of times a 
particular experiment service (FISMOs) has been executed. The following accounting 
based services can be invoked using a path 
https://<HOST>:<PORT>/schedulerServices/accounting/<API> 

 

API /getUserExecutionCount 

Description  This API is used to get the number of times a particular user has 
executed experiments 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro 
QueryParam: String fromTime 

QueryParam: String toTime (default “”) 

The fromTime is a string that should be in the format YYYY-MM-
DD’T’HH:mm:ss.SSS’Z’. A sample fromTime is “2016-09-
15T13:57:00.0Z”. In case toTime is not provided, UTC now will be 
used. 

Output {“count”: <count>} is returned as a Response if successful. Here, 
the “count” is the number of times a user has executed experiments. 
Note that the count can also be 0. {“response”: <ERROR>} is 
returned as a Response if unsuccessful.  

Produces application/json  

Errors • “UnParsableDate”: fromTime is not in the correct format and 
thus cannot be parsed in the required format. 

• “PersistenceException”: is a generic error returned by the 
Quartz scheduler. 

• “ImplementationException”: is a generic error however with 
respect to this API it would mean “Failed to execute the API” 

 

API /getJobExecutionCount 

Description  This API is used to get the number of times a particular job was 
executed. 

Method GET 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  71 

 

Input QueryParam: String jobID 
HeaderParam: String iPlanetDirectoryPro 

Output {“count”: <count>} is returned as a Response if successful. Here, 
the “count” is the number of times the job is executed. Note that the 
count can also be 0. {“response”: <ERROR>} is returned as a 
Response if unsuccessful.  

Produces application/json  

Errors • “NoSuchJobID”: JobID is incorrect or does not exist 
• “PersistenceException”: is a generic error returned by the 

Quartz scheduler. 
• “ImplementationException”: is a generic error however with 

respect to this API it would mean “Failed to execute the API” 
 

6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs 

Here we list all the APIs that provide experimenters info on the testbed status, monitor 
a sensor etc.  The following APIs can be invoked using a path 
https://<HOST>:<PORT>/testbed-monitoring/api/<API>. 

API /testbeds 

Description  This API is used to get all testbeds that are known by the monitoring 
tool. 

Method GET 

Input None 

Output Returns the list of testbeds in the format: 
{“<TESTBED_IRI>”: “<TESTBED_NAME>”,..} 

Here <TESTBED_IRI> is the identifier which is used in the Iot-Registry. 

Produces application/json 

Errors • None 

 

API /testbeds/activated 

Description  This API is used to get all testbeds that are activated. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  72 

 

Method GET 

Input None 

Output Returns the list of all activated testbeds in the same format as in 
/testbeds. 

Produces application/json 

Errors • None 

 

API /testbeds/<string:testbed_name> 

Description  This API is used to get all known information about specific testbed. 

Method GET 

Input URLParam: String : The TESTBED_IRI or the INTERNAL_ID of the 
wanted testbed 

Output Returns the testbed information in the following format: 
{ 
  "activated": <activated>, 
  "location": { 
    "latitude": <latitude>, 
    "longitude": <longitude> 
  }, 
  "testbed_name": <TESTBED_NAME>, 
  "sensors": { 
    "active": <active_sensors>, 
    "relative": <relative_sensors>, 
    "total": <total_sensors> 
  }, 
  "_id": <INTERNAL_ID>, 
  "testbed_iri": <TESTBED_IRI> 
} 

Produces application/json 

Errors • {"error_msg": "No testbed found for 
<TESTBED_IRI>", "error": true} 

 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  73 

 

API /testbeds/<string:testbed_name>/sensors 

Description  This API is used to get all known sensors from a specific testbed. 

Method GET 

Input URLParam: String - The TESTBED_IRI or the INTERNAL_ID of the 
wanted testbed 
QueryParam: String sensor-type – The list can be filter by the type of 
sensor (e.g.: m3-lite:HumiditySensor) 
QueryParam: String unit – The list can be filter by the measured unit of 
sensor (e.g.: m3-lite:Percent) 
QueryParam: String quantity-kind – The list can be filter by the 
measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity) 

Output Returns the list of all sensors in the following format: 
[ 
  { 
    "sensor_name": <SENSOR_NAME>, 
    "longitude": <longitude>, 
    "latitude": <latitude>, 
    "sensor_type": <sensor_type>, 
    "unit": <unit>, 
    "deployment": <deployment>, # The ID of the testbed 
this sensor is deployed on 
    "quantity_kind": <quantity_kind>, 
    "newest_value": { 
      "color": <color>, 
      "value": <value> 
    }, 
    "newest_date": { 
      "color": <color>, 
      "value": <value> 
    }, 
    "_id": <INTERNAL_ID> 
  }, 
  {...}, 
  ... 
] 

Produces application/json 

Errors • {"error_msg": "No testbed found for 
<TESTBED_IRI>", "error": true} 

 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  74 

 

API /sensors 

Description  This API is used to get all known sensors from all testbeds. 

Method GET 

Input QueryParam: String sensor-type – The list can be filter by the type of 
sensor (e.g.: m3-lite:HumiditySensor) 
QueryParam: String unit – The list can be filter by the measured unit 
of sensor (e.g.: m3-lite:Percent) 
QueryParam: String quantity-kind – The list can be filter by the 
measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity) 

Output Returns the list of all sensors in the same format as in 
/testbeds/<string:testbed_name>/sensors 

Produces application/json 

Errors None 
 

API /sensors/<string:sensor_name> 

Description  This API is used to get all information about one specific sensor. 

Method GET 

Input URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the 
wanted sensor 

Output Returns the sensor information in the following format: 
{ 
  "sensor_name": <SENSOR_NAME>, 
  "longitude": <longitude>, 
  "latitude": <latitude>, 
  "sensor_type": <sensor_type>, 
  "unit": <unit>, 
  "deployment": <deployment>, # The INTERNAL_ID of the 
testbed this sensor is deployed on 
  "quantity_kind": <quantity_kind>, 
  "newest_value": { 
    "color": <color>, 
    "value": <value> 
  }, 
  "newest_date": { 
    "color": <color>, 
    "value": <value> 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  75 

 

  }, 
  "_id": <INTERNAL_ID> 
} 

Produces application/json 

Errors • {"error_msg": "No sensor found for <SENSOR_NAME>", 
"error": true} 

 

API /sensors/<string:sensor_name>/observations 

Description  This API is used to get all observations for one specific sensor. 

Method GET 

Input URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the 
wanted sensor 

Output Returns the list of observations for this sensor in the following format: 
[ 
  { 
    "time_value": <ISO_TIME>, 
    "data_value": <VALUE> 
  }, 
  {...}, 
  ... 
] 

Produces application/json 

Errors • {"error_msg": "No sensor found for <SENSOR_NAME>", 
"error": true} 

 

API /testbeds/<string:testbed_iri>/activate 

Description  This API is used to activate a testbed in the monitoring tool. All testbeds 
will be monitored but only activated testbeds will be shown in the GUI. 
Only FIESTA-IoT admins are permitted to activate and deactivate 
testbeds. 

Method GET 

Input URLParam: String : The TESTBED_IRI or the INTERNAL_ID of the 
wanted testbed 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  76 

 

Output Returns the activated testbed in the same format as in 
/testbeds/<string:testbed_iri> 

Produces application/json 

Errors • {"error_msg": "Error while activating testbed 
<TESTBED_IRI>. Testbed could not be found.", "error": 
true} 

 

API /testbeds/<string:testbed_iri>/deactivate 

Description  This API is used to deactivate a testbed in the monitoring tool. 

Method GET 

Input URLParam: String: The TESTBED_IRI or the INTERNAL_ID of the 
wanted testbed 

Output Returns the deactivated testbed in the same format as in 
/testbeds/<string:testbed_iri> 

Produces application/json 

Errors • {"error_msg": "Error while deactivating testbed 
<TESTBED_IRI>. Testbed could not be found.", 
"error": true} 

 

6.3 Experiment ResultSet Storage APIs 

Here we list all the APIs that provide ERS functionalities.  The following APIs can be 
invoked using a path https://<HOST>:<PORT>/experiment-result-store  

API /experiment-result-store 

Description  This interface allows experiment results to be stored in persistence 
until it is retrieved by the experimenter. Results must be stringified and 
encapsulated in a JSON object. 

Method POST 

Input HeaderParam: String userID, Username of the client 
HeaderParam: String femoID 
HeaderParam: String jobID: optional, jobID of the FISMO in the EEE 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  77 

 

Output 204 OK 

Produces application/json 

Errors 400 Bad Request 
 

API /experiment-result-store 

Description  All result sets that cannot be sent to the experimenters are stored in 
the Experiment Result Storage (ERS). ERS stores result set as is and 
returns them when service is invoked. Upon a success, the particular 
result set is deleted from the store. 
Experimenters need to use an ERS API to download the needed data. 
This API has a signature 

Method GET 

Input HeaderParam: String iPlanetDirectoryPro 
HeaderParam: String femoID 
HeaderParam: String jobID: optional, JobID of the FISMO in the EEE 
If both FEMOID and JobID are provided, then the corresponding 
FISMO results are returned. 
If only the FEMOID is provided, then all FISMO execution results 
under that particular FEMO along with its corresponding job IDs are 
returned. 

Output On successful response following provided template is returned 
{ "femoResults": [ 
   {   "jobid": "<JOBID>", 
       "results": [                  
  { "time": "<TIMESTAMP>",  
             "result": "<RESULTSET>" 
           } 
        ] 
     },…… 
]} 

{“response”: <ERROR>} is returned as a Response if unsuccessful 

Produces application/json 

Errors 400 Bad Request 
401 Unauthorized 

 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  78 

 

6.4 Documentation of APIs 

The EEE API documentation was built using Swagger and is available to the 
Experimenters for testing and understanding. The EEE APIs are divided into 2 
categories: one for the experimenters and another for the FIESTA-IoT Admins. For 
security purposed we just release the link1 for the APIs that are made public to the 
experimenters. The public version of the APIs for other components like FAT2 and 
ERS3 is available in Markdown. Please note that for some tools like the monitoring tool, 
the API documentation is still under implementation phase. It will soon be added to the 
portal.  
  

                                            
1 https://platform.fiesta-iot.eu/EEEapidocs/ 
2 FAT API - https://gist.github.com/UniSurreyIoT/521a1927681ff0727ab1d2a1d89e1b0c 
3 ERS API - https://gist.github.com/UniSurreyIoT/c5fb321fd2c0b519cd3ef5f6793d7ffd 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  79 

 

7 PROTOTYPE  

7.1 PORTAL 

The FIESTA-IoT project has developed a portal to be used by all the users of the 
platform as a one-stop shop for all activities. This web-portal has been re-designed in 
order to improve both the user experience and the look and feel. The current version 
of the portal is based on bootstrapping CSS and html5 and provides a simple but user-
friendly interface. The welcome page of the portal is shown in Figure 33. As it can be 
seen, the simple interface provides a left vertical menu, leaving the rest of the page 
free for the actual content.  

  
Figure 33: Portal welcome page 

7.1.1 Signing in  

The FIESTA-IoT portal is not accessible publicly and only registered and accredited 
users have access. In order to login to the portal, the users should access the page: 
https://platform.fiesta-iot.eu that will redirect automatically to the login page of the 
OpenAM [10], as shown in Figure 34. 
After using the correct credentials, the users are redirected to https://platform.fiesta-
iot.eu/portalui that displays the initial web page of the portal, as shown in Figure 33. 

https://platform.fiesta-iot.eu/
https://platform.fiesta-iot.eu/portalui
https://platform.fiesta-iot.eu/portalui


Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  80 

 

 
Figure 34: Portal login page 

7.1.2 Menus 

The portal provides five different menu categories:  

• Home: this is the initially displayed menu, which includes some generic 
interest pages that are accessible by all users that are registered to the portal. 
This category includes the following pages:  

o Welcome: this displays the initial welcome page with general 
information about the FIESTA-IoT project. 

o Guide: this page shows some basic information with links to the 
FIESTA-IoT Moodle pages for the complete guides for experimenters 
and testbed providers. 

o Contact us: this page includes information for contacting the support 
team or the project management team.  

o Statistics: this page includes some sample statistics about the usage 
of the FIESTA-IoT platform. It includes two tables, with (i) mapping of 
experiments per testbed and (ii) mapping of testbeds per domain. It 
also includes two graphs with statistics for the reasoning tool and the 
number of registered devices per quantity kind. This page is shown in 
Figure 35. 

• Experimenter: this is the main menu category for experimenters to create, edit 
and manage their experiments using the developed user interfaces. This 
menu includes the following web pages:  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  81 

 

o Experiment editor: this is the tool for creating and editing experiments 
(see Section 5.3.1 for more details). 

o Experiment Register Client: this is the tool for uploading and registering 
experiments via a FEDSPEC file. 

o Management console: this is the tool for managing, scheduling and 
running experiments (see Section 5.3.2 for more details). 

• Testbed provider: this is the main menu category used by testbed providers for 
registering their testbed, the resources and configuring them. It includes the 
following pages:  

o Register testbed: this page displays the tool for the online registration of 
a new testbed. 

o Register resources: this page displays the tool for the online registration 
of new devices for the selected testbed in various ways (by text, by 
upload or manually). 

o TPI configurator: this page includes the tool for configuring the testbed 
provider interface. 

• Tools: this menu category includes additional tools that can be used by 
experimenters (and/or testbed providers), with extra functionalities that are 
useful but are not mandatory. These functionalities are: 

o Testbed monitoring: this page displays the tool for monitoring the status 
of the testbeds (for more information see Section 5.3.5). 

o Certification [14]: this link redirects the testbed user to the certification 
portal of the FIESTA-IoT project, where the testbed providers can get 
validation for the standardised way their testbeds are integrated in the 
platform. 

o Reasoning: this is another menu category to be used by experimenters 
for creating, registering and running rules that can be helpful for their 
experiments (see Section 5.3.3 for more details). 

• Demo: this menu category includes sample experiment demos that show the 
full functionality of the FIESTA-IoT platform. 

• Help: this menu category provides several helping pages: 
o About FIESTA-IoT: this is a link to the web-page of the project. 
o Support: this is a link to the support page of the website of the project. 
o Documentation: this is a list of web pages providing the documentation 

of all tools and functionalities developed by the FIESTA-IoT project.  
o Social Media Resources: this provides links to the youtube channel, 

and the twitter and slideshare accounts of the FIESTA-IoT project. 
• Create Ticket: this link provides a quick access tool for the users in order to 

create tickets for asking help by the FIESTA-IoT team or for submitting issues 
and problems. 

 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  82 

 

 
Figure 35: Portal statistics page 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  83 

 

7.1.2.1 Access control / Roles for Menu 

For the FIESTA-IoT portal there are four main access role categories:  

• Registered users 
• Experimenters 
• Testbed providers 
• Administrators 

The portal has been designed to provide different access to the menus and the web 
pages according to the role of the user. Access is controlled by the usage of a JSON 
file, with roles, URLs, targets, CSS icon styles, etc. Based on the current logged on 
user, the data are filtered in the JSON file to disable/enable menu on the portal. Table 
11 shows a mapping of the portal menus to the user roles. 

Table 11: Access roles per portal menu  
Menu Category Registered 

user 
Experimenter Testbed 

provider 
Administrator 

Home X X X X 
Experimenter  X  X 
Testbed Provider   X X 
Tools  X X X 
Demo X X X X 
Help X X X X 
Create Ticket X X X X 

 
An example for the controlling of the access to the Testbed provider menu is given 
below, showing that only the administrator and the testbed provider are allowed 
access: 
{ 
"name":"Testbed Provider", 
"roles":["fiestaAdmin","testbedAdmin"], 
"cssClass":"fa fa-snowflake-o", 
"submenus": [ 
   { 
    "name":"Register Testbed", 
    "url":"https://platform.fiesta-iot.eu/ui.testbed-
registry/#/register-testbeds", 
    "roles":["fiestaAdmin","testbedAdmin"], 
    "cssClass":"fa fa-circle-o" 
   }, 
   { 
    "name":"Register Resources", 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  84 

 

    "url":"https://platform.fiesta-iot.eu/ui.testbed-
registry/#/register-devices", 
    "roles":["fiestaAdmin","testbedAdmin"], 
    "cssClass":"fa fa-circle-o" 
   }, 
   { 
    "name":"TPI Configurator", 
    "url":"https://platform.fiesta-
iot.eu/tpi.configurator/index.zul", 
    "roles":["fiestaAdmin","testbedAdmin"], 
    "cssClass":"fa fa-circle-o" 
    } 
  ] 
} 

7.2 Usage 

7.2.1.1 Testbeds 

The tools for registering a Testbed, registering resources and managing the testbed 
interface have been provided in the rest of WP3 and WP4 Deliverables (especially [15], 
[16]) so will not be described again here to avoid repetition. 

7.2.1.2  Experimenters 

7.2.1.2.1 Create an Experiment 

FIESTA-IoT provides a web tool to create and edit experiments called Experiment 
Editor. There are a couple of ways to create experiment using the Experiment Editor: 
one is to create a new experiment, another is to duplicate an existing experiment 
option. 
To create a new experiment using the Experiment Editor we have to click on the add 
icon on the rectangular block, as shown in Figure 7, which would then redirect us to 
the new experiment template. This template can be divided in to three blocks: FEMO, 
FISMOs and Query. Note that the experiment editor follows the defined FIESTA-IoT 
experiment DSL. 
 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  85 

 

 
Figure 36: Experiment Template FEMO 
The FEMO block contains three fields FEMO Name, FEMO Description and Domain 
of Interest as shown in the Figure 36. For details on the FEMO we refer the readers to 
[12]. 
A FEMO should have at least one FISMO that is created from the initial template. An 
experimenter can add multiple FISMOs depending on the experiment requirements by 
clicking the add icon in the FISMO block. Each created FISMOs are listed in align with 
the FISMO block and every FISMO comes with two immediate options next to its name, 
Duplicate FISMO operation and Delete FISMO operation. Duplicating a FISMO would 
create a new FISMO with the same parameters as the existing FISMO, while clicking 
on the delete icon would remove that particular FISMO form the FEMO. Note that the 
changes will not take place unless the save button is clicked.  

 
Figure 37: Experiment template FISMO 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  86 

 

A FISMO template consists of seven fields, FISMO Name, FISMO Description, 
Discoverable, Experiment Control, Experiment Output and Widget as shown in Figure 
37. For details on the FISMO we refer the readers to [12]. 
Every FISMO contains a single Query. The query block contains Quantity Kind, Static 
Location, Query Interval, and Dynamic Attributes as shown in the Figure 38. For details 
on the Query Control we refer the readers to [12]. 
  

 
Figure 38: Experiment Template Query 

Using the duplicate option in the FEMO block at start of Experiment Editor will result in 
creating a new experiment with all the FISMO and Queries in the existing experiment.  

7.2.1.2.2 Register new Experiment 

FIESTA-IoT is currently offering a simple interface in order to store, update and delete 
experiments called Experiment Register Client. This UI is used in case experiment was 
using FEDSpec based execution and created the FEDSpec using proprietary tool other 
than Experiment Editor. The Experiment Register Client can be found at the 
Experimenter menu of the FIESTA-IoT portal (see Figure 39). 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  87 

 

 
Figure 39: Portal Experimenter Menu 

The Experiment Register Client provides the ability to store an experiment at the 
FIESTA-IoT platform in the form of a FEDSpec. The defined FEDSpec could be as 
simple as a single service (FISMO) or as complex as multiple experiments (FEMOs). 
To upload a FEDSpec first one should identify the location of it by hitting the “Open 
FEDSpec” (see Figure 40 below) and then by hitting the “Save FEDSpec” button. As 
soon as the FEDSpec is saved the included FEMOS appears in the available 
experiments list (FEMOS) as shown in Figure 40. When uploading a FEDSpec the 
FEMO/FISMO IDs should be empty, as they will be automatically assigned by the 
system.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  88 

 

 
Figure 40: Experiment Register Client 

By choosing a FEMO from the list, the User is capable to have a quick overview of it 
as shown in Figure 41 below. 

 
Figure 41: Experiment Register Client - Experiment Browser 

The tools provides also the ability to export a FEMO by hitting the “Export FEDSPEC” 
button after choosing the FEMO of interest from the provided list. The FEDSpec that 
will be exported will now contain the FEMO/FISMO IDs assigned from the FIESTA-IoT 
platform. This will give the Experimenter the ability to update the exported 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  89 

 

FEMO/FISMO by updating the XML file and saving it again to the Experiment 
Repository following the same process described above. 

7.2.1.2.3 Execute Experiment 

An experiment can be executed in many ways and FIESTA-IoT provides solutions for 
the execution of experiment for two categories of users (novice, advanced). Further, 
for the advanced user case FIESTA-IoT provides 2 solutions: one based on APIs of 
EEE and another one based on directly accessing IoT-Registry APIs. Novice 
experimenters are advised to use the method described in this section. 
As said experiment execution is handled by a component called “Experiment execution 
Engine” or EEE. This module uses and supports the experiment description written by 
an experimenter in the DSL format specified by FIESTA-IoT (for reference on the DSL 
refer to [12]). Amongst the available features in the DSL, in the current version, EEE 
supports only a few.  These include starting an experiment service (FISMO), pausing 
a FISMO, restarting a FISMO, subscribing to already existing and discoverable 
FISMOs, unsubscribing from subscribed FISMOs, and polling a FISMO (executing one 
time a FISMO on the FIESTA-IoT platform).  The EEE specific APIs are available4 for 
developers or experimenters for testing and more in-depth knowledge about specific 
APIs. Note that in case an experimenter wants to use the EEE API they should still 
upload the FEDSpec either using the ERM API [12] or the ERM Client. Nevertheless, 
experimenters can also use Experiment Management Console and perform actions on 
the FISMO. This option is to be used by novice experimenters.  
In order to execute an experiment using Experiment Management Console that is 
described by its FISMOs, the Experimenter first need to go to: 
https://platform.fiesta-
iot.eu/experimentConsole/experimentConsole.jsp  

You can also use the cookie version of the console by just using the link above. Upon 
successful authentication, the list of experiments associated with the experimenter or 
the user is retrieved as shown in Figure 10. Note that this is also available via portal. 
The experimenter needs to go to the Experimenter Menu and click the “Experiment 
Management Console” 
From this view, experimenters can then select whichever experiment they want to work 
on from the list using the “SELECT” button next to each experiment.  Once a particular 
experiment is selected, this would open another UI (as shown from Figure 42 to Figure 
44). The entire UI is divided into 3 panes: Experiment Details, Associated FISMOs, 
and Subscription Pane) where experiment name, experiment description, a list of 
experiment Domain of Interest along with Associated FISMOs and available FISMOs 
for subscription is shown. 
An experimenter can choose to update the metadata of the experiment that he/she has 
created using “EXPERIMENT EDITOR”. This will open the UI provided in Section 5.3.1 
where experimenter can resubmit their updated Experiments. Upon these 

                                            
4 https://platform.fiesta-iot.eu/EEEapidocs/ 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  90 

 

resubmissions, a service in EEE is triggered that changes only the scheduling interval. 
If the scheduling interval is not changed nothing is updated on the EEE. 
The “Associated FISMOs” pane shows the “meta” information about the FISMOs that 
are associated to a particular experiment. The “meta” information includes: if the 
FISMO was Owned or Subscribed within the frame of an experiment, the status of the 
FISMO (either NOT YET SCHEDULED, NORMAL, PAUSED, etc.), past execution history and 
polling option. Once scheduled a “delete job” button will appear that will let 
experimenters delete any reference of a particular FISMO from EEE. Upon deleting 
the FISMO will not be executed any more. In order to check for the description of the 
FISMO, experimenter can click on the name. This will open a snackbar in the bottom 
of the page and will show the description of the selected FISMO.  
Initially, all the FISMOs have the NOT YET SCHEDULED status. If the experimenter wants 
to start the FISMO, they can switch the toggle button. Upon first toggle, the FISMO will 
be scheduled by the EEE with the NORMAL status. Another toggle would PAUSE the 
FISMO execution. Yet another toggle would restart the PAUSED FISMO. In order to 
successfully schedule the FISMO execution, the current version of the EEE supports 
all that is specified in Section 3.2. 
A sample of <fed:scheduling> is provided below: 
<fed:scheduling> 

  <fed:startTime>2016-11-08T18:13:51.0Z</fed:startTime> 

      <fed:Periodicity>600</fed:Periodicity> 

      <fed:stopTime>2017-11-08T18:13:50.0Z</fed:stopTime> 

</fed:scheduling> 

The <fed:scheduling> would provide the EEE with the start date, end date and the 
periodicity of the FISMO execution. Thus making these attributes essential in the 
FISMO description. Once the schedule is set in the EEE, EEE provides a JOB ID that 
is used for internal purposes. This JOB ID is then provided with the status NORMAL. 
Upon the schedule, the <query> is read by the EEE from the FISMO description and 
is sent to FIESTA-IoT Meta-Cloud. The Meta-Cloud executes the query and sends 
back the results to the EEE. The EEE stores the result internally and pings the location 
specified in the location specified by the <fed:experimentOutput> 
(<fed:experimentOutput location=“location”/>).  Upon success, the results are 
sent to the specified location and deleted from the internal repository. Currently, EEE 
assumes that the “location” here is a URL, where the specified credentials are granted 
to the EEE to write the results in a file. For reference and ease, a sample code that 
experimenters can execute on their server can be found in the following public 
repository5. It is thus noteworthy to state that currently EEE only supports one 
mechanism right now to send the information to the experimenter. Given the above, it 
is thus essential to specify <fed:scheduling> <experimentControl> attribute of 
FISMO, <query> under <prt:query-request> under <fed:queryControl> and 
<fed:experimentOutput  location=“location”>. If the experimenter wants to just 
execute the FISMO and not to wait for the EEE to trigger the execution of the FISMO, 
                                            
5 https://github.com/fiesta-iot/experiment.data.receiver 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  91 

 

the experimenter can use POLL NOW. The POLL NOW will execute the <query> defined 
within the FISMO and would return the results to the same URL that is specified (i.e. 
the URL where results of scheduled execution are being sent). 
 

 
Figure 42: Part 1: Experiment Detail Pane 

 
Figure 43: Part 2: Associated FISMOs Pane 

 
Figure 44: Part 3: Subscription Pane 

Nonetheless, apart from the above functionality, an experimenter can also subscribe 
to an already existing FISMO6. In case there are many FISMOs available, an 
experimenter can choose a particular FISMO from the dropdown list and provide the 
URL information (see Figure 44). Note that as EEE only support URL, experimenters 
must specify a valid endpoint. Only after validating the experimenter’s URL the 
“SUBSCRIBE” button will be unlocked. The experimenter can currently only choose 
one FISMO at a time.  

                                            
6 If there were no FISMOs available for subscription this part would be disabled. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  92 

 

Once successfully subscribed, the list of Associated FISMOs is updated to show the 
subscriptions. Each new subscription would provide a new JOB ID where the status of 
the JOB would be NORMAL to the subscribed FISMO and its execution would begin as 
the schedule specified in the description of that particular subscribed FISMO (see 
Figure 43). Moreover, the URL specified in the FISMO will not be used. Instead the URL 
specified by the subscriber would be used to forward the results. An experimenter, on 
demand, can unsubscribe the subscribed FISMO by clicking “UNSUBSCRIBE”. This 
will delete the JOB associated from the EEE.  
An experimenter is also given a capability to see the details of past executions of the 
“Associated FISMOs”. The details are provided in the form of a graph and contains 
information like how much time did it take to execute the FISMO and how much data 
was obtained from the Meta-Cloud. This graph however does not show how much time 
did it take to execute the FISMO and how much data was obtained from the Meta-
Cloud when the FISMO is polled.  
In order to delete the experiment, it is advised that experimenters first stop/delete the 
execution of any related FISMO objects on the EEE using the EMC. Once this is done, 
they are advised to remove the experiment from the Experiment Registry Client. We 
acknowledge this workflow because this will give experimenters a view of what all 
services are running and if it is really required to remove them at all. 
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  93 

 

8 IMPLEMENTATION 

In this section, we provide details of the installation procedures for the different 
components we have built. 

8.1.1 Source Code Availability 

In the first version of the document [1], we listed that FIESTA-IoT components are 
available on private Gitlab7. Nevertheless, FIESTA-IoT consortium members privately 
use Gitlab. A public version of the components is also available for the experimenters 
or testbeds for their use. The public versions of the components are available via 
Github8. Within Github FIESTA-IoT components that are provided are: ontology, TPI, 
sample experiment and Experiment Data Receiver. 

8.1.2 Components 

All of the described components are maven9 projects and are deployable within 
WILDFLY10 container. The Experiment Data Receiver however is the only component 
that currently only executes on Tomcat. 

8.1.2.1 Experiment Editor 

8.1.2.1.1 System Requirements 

Table 12 lists the system requirements that are needed to build and deploy the 
Experiment Editor. Experiment Editor is built using Node11. Once the component is 
successfully deployed its services can be accessed via 
http://[HOST]:[PORT]/expeditor where [HOST] is the host and [PORT] the port 
on which the Node is running. 

Table 12: System Requirements for Experiment Editor  
Requirements Version 
Node v.6.xx 

8.1.2.1.2 Dependencies 

The Experiment editor requires certain dependencies that form the core of the 
component. These include those listed in the Table 13.  

                                            
7 https://gitlab.fiesta-iot.eu/platform/core/ 
8 https://github.com/fiesta-iot  
9 https://maven.apache.org  
10 http://wildfly.org/  
11 https://nodejs.org/  

https://gitlab.fiesta-iot.eu/platform/core/
https://github.com/fiesta-iot
https://maven.apache.org/
http://wildfly.org/
https://nodejs.org/


Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  94 

 

Table 13: Dependencies for Experiment Editor 
Requirements Version 
PM2 v.2.x.x 

 

8.1.2.1.3 Install and Run 

To install and run the experiment editor, the following steps should be followed in a 
chronological order. Note that to correctly install the Experiment Editor, no 
requirements or dependencies should be previously installed, as there might exist 
configuration issues.  
Install Node JS 
The documentation and package files required for the installation in any system can 
be found at https://nodejs.org/en/. To install on an Ubuntu machine, use either:  
$ curl –sL https://deb.nodesource.com/setup_6.x | sudo –E bash - 
or 
$ sudo apt-get install -y nodejs 
Install Production Process Manager for Node js ‘PM2’ 
PM2 is a production process manager for Node.js applications with a built-in load 
balancer. It allows applications to be kept alive forever, to reload them without 
downtime and to facilitate common system admin tasks. 
To install PM2 use: 
$ npm install pm2 -g 

Setup git access key set 
Generation of the RSA key pair is needed to pull the Expeditor from fiesta-ui.git. Copy 
the result of public key and send it to the administrator to get access to the server and 
the key can be added to the ssh trust store. Following is an example of where a sample 
file can be placed/added  
$ cat ~/.ssh/fiesta.expeditor.git.pub 

Clone and Pull the source from git 
Clone the Experiment Editor source code from git using: 
$ git clone https://thyunkim@bitbucket.org/synctechnoinc/fiesta-
ui.git 

Pull the Experiment Editor source code from git using 
$ cd fiesta-ui 

$ git pull 

Installing Required Libraries and Start 
After pulling the code from the git, the required libraries must be installed using: 

https://nodejs.org/en/


Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  95 

 

$ npm install 
$ bower install 

Start Experiment Editor using 
$ pm2 start npm —name expeditor — start 

Restarting the Experiment Editor 
When code changes, the administrator should first pull from the git and restart pm2 as 
follows: 
$ git pull 

$ npm install 

$ bower install  

$ pm2 restart expeditor 

Logs 
The log file of the Experiment Editor can be also accessed using 
$ cd ~/.pm2/logs 

$ pm2 logs expeditor 

8.1.2.2 Portal 

8.1.2.2.1 System Requirements 

Table 14 lists the system requirements that are needed to build and deploy the Portal. 
Once the portal is successfully deployed it can be accessed via 
http://[HOST]:[PORT]/portalui where [HOST] is the host and [PORT] the port on 
which the WILDFLY  is running. 

Table 14: System Requirements for Portal  
Requirements Version 
Memory >512MB  
Wildfly 10.0.0 

8.1.2.2.2 Dependencies 

The Portal requires certain dependencies that form the core of the component. These 
include those listed in the Table 15. 

Table 15: Dependencies for Portal 
Requirements Version 
Java Java version 8 or later 
Spring boot V1.5.8 
Thymeleaf V3 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  96 

 

AdminLTE V2.4 

8.1.2.2.3 Install and Run 

Below are the commands that someone should use to build the portal on the FIESTA-
IoT development machine, using maven:  
$ ./mvnw -DskipTests=true -Pdev clean package 

 For building the portal on a test environment, one should use the command 
$ ./mvnw -DskipTests=true -Ptest clean package 

For building the portal on the production environment, one should use the command 
$ ./mvnw -DskipTests=true -Pprod clean package 

For running the portal on any environment. Targeting to be displayed at the “portalui” 
address, one should use the command 
$ java -jar target/portalui.war 

The portal should be deployed by uploading the portal war file via WILDFLY using Java 
8 and WILDFLY 10.0.0 or a later version. The portal also saves logs on the portalui.log 
file. 

8.1.2.3 Experiment ResultSet Storage 

8.1.2.3.1 System Requirements 

The following Table 16 lists the system requirements that are needed to build and 
deploy the component on the WILDFLY container. Once the component is successfully 
deployed its services can be accessed via http://[HOST]:[PORT]/experiment-
result-store where [HOST] is the host and [PORT] the port on which WILDFLY is 
running. 

Table 16: System Requirements for ERS  
Requirements Version 
Java JDK 1.8 
Maven 2.x 
MySQL Server Community Edition 5.x 
Wildfly  10 

8.1.2.3.2 Dependencies 

The Experiment Result Store (ERS) requires certain dependencies that form the core 
of the component. These include those listed in the Table 17. To know the complete 
list we redirect the readers to the pom.xml of the component that is made available via: 
https://gitlab.fiesta-iot.eu/platform/core/tree/develop/modules/experiment/ers  

https://gitlab.fiesta-iot.eu/platform/core/tree/develop/modules/experiment/ers


Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  97 

 

 
Table 17: Dependencies for ERS 

Requirements Version 
javaee-web-api 6.0 
org.restlet 2.3.9 
org.restlet.jee 2.3.8 
mysql-connector-java 5.1.22 
jackson-databind 2.7.0 

8.1.2.3.3 Install and Run 

Below we list various steps that need to be performed in order to successfully install 
the component. 
As the first step one has to setup a schema and table in the MySQL database. The 
following SQL script can be used to create it: 
CREATE SCHEMA IF NOT EXISTS ers; 

CREATE TABLE IF NOT EXISTS ers.experiments ( 

    USER_ID varchar(255), 

    FEMO_ID varchar(255), 

    JOB_ID varchar(255), 

    TIME_STAMP varchar(255), 

    EXPR_RESULT MEDIUMTEXT 

); 

The above script to generate the database in the MySQL can be found under the 
folder /WEB-INF/sql-scripts/create-expr-store.sql. 

Once the database is setup, code properties need to be set up. There are two 
Properties files under /WEB-INF/config (a) db.properties: dedicated for database 
connection setting, and (b) global.properties: for global properties (note, this file is 
substituted with the common properties file (fiesta-iot.properties) for the core 
platform. The db.properties file consists of following properties: 
#hostname for database 

hostname = localhost 

#port number for database 

port=3307 

#username for database 

username = {username} 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  98 

 

 

#password for database 

#on first run a database will be created with the password set below 

password = {password} 

#path for database 

#N.B: MAKE SURE DIRECTORY PATH IS ACCESSIBLE. 

#for mysql use database name, e.g. "/s2w" 

#for H2 use path and database name, e.g. "/~/"  

#path=/~/sdr/ 

name=test2 

The global.properties file consists of following properties: 
#hostname for OpenAM authentication Proxy. 

hostname = {hostname}/openam/json/users?_action=idFromSession 

Once the above is done, do the following to generate the WAR file: 
$ cd <PATH TO EXPERIMENTRESULTSTORE> 

$ mvn clean install 

Once all these have been set and the WAR file generated, developers can deploy the 
WAR file on the WILDFLY container. The MySQL server instance should be running 
before the deployment is done. Once deployed the ERS services can be accessed at 
http(s)://<HOST>:<PORT>/experiment-result-store where [HOST] is the host and 
[PORT] the port on which WILDFY container is running. 

8.1.2.1 Experiment Data Receiver 

A sample code12 is provided for experimenters to receive data provided by EEE.  

8.1.2.1.1 System Requirements 

The following Table 18 lists the system requirements that are needed to build and 
deploy the component on the experimenter’s side. Once the component is successfully 
deployed its services can be accessed via 
http://[HOST]:[PORT]/ExperimentServer/store/ where [HOST] is the host and 
[PORT] the port that Tomcat uses. The component is tested to be successfully 
executed on Tomcat. 

Table 18: System Requirements for Data Receiver  
Requirements Version 

                                            
12 https://github.com/fiesta-iot/experiment.data.receiver/tree/master/ExperimentServer 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  99 

 

Java Platform, Standard Edition 1.8.0_25 
Maven 3.1.1 
Apache Tomcat 8 

8.1.2.1.2 Dependencies 

The Experiment Data Receiver requires certain dependencies that form the core of the 
component. These include those listed in the Table 19. (Note we do not list all the 
dependencies needed. To know the complete list we redirect the readers to the 
pom.xml of the component that is made available via https://github.com/fiesta-
iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml): 

Table 19: Dependencies for Data Receiver 
Requirements Version 
xml-apis 1.4.01 
Resteasy (jaxrs, jaxb-
provider, html) 

3.0.6.Final 

portlet-api 2.0 
servlet-api 2.5 
jsp-api 2.1 

8.1.2.1.3 Install and Run 

To deploy, on the experimenter side following has to be done before the deployment 

• in the web.xml change the location entry for multipart-config with the 
desired location 
<multipart-config>  

<location>#LOCATION#</location>   

</multipart-config> 

• In the  
src/eu/fiesta_iot/experimentServer/ExperimentServerService.java
 change the $(LOCATION) to match the location set in the web.xml 
File file = new File("${LOCATION}", fileName) 

Note that this location is the desired location where you want to store the 
received files. 

• Make sure that the #LOCATION# has read-write permissions to the Tomcat 
user and group (under the name and group Tomcat is running). 

• In the Tomcat server change the following line in the conf/content.xml 
<Context>      ...  </Context> 

https://github.com/fiesta-iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml
https://github.com/fiesta-iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml


Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  100 

 

with the following 
  <Context allowCasualMultipartParsing="true">       

... 

</Context> 

• restart Tomcat server 
Once the above is done, do the following 
$ cd <PATH TO EXPERIMENTSERVER> 

$ mvn clean install 

$ cp <PATH TO EXPERIMENTSERVER>/target/ExperimentServer.war <PATH TO 
TOMCAT WEBAPPS> 
 
Your service is running at http(s)://<HOST>:<PORT>/ExperimentServer/store/ 
and thus your URLLOCATION should be 
http(s)://<HOST>:<PORT>/ExperimentServer/store/ 

This will enable you to receive the resultsets that are generated after the execution of 
your FISMO. As also stated before the name of the file received follows a naming 
convention. Again, it is: 
String filename = JOBID.replace(“-”,””)+URLLOCATION.replace(":", 
"").replace("/", "_")+”_”+LONG_TIMESTAMP; 

Note here JOBID is a UUID, URLLOCATION is the location that you provide and 
LONG_TIMESTAMP is a timestamp in long (milliseconds after epoch). 
If the experimenter is using HTTPS, then they should use LetsEncrypt certificate for 
this API/URL. All other certificates other than those available in default JVM 
configuration will fail. This is because of the JVM does not have all the certificates 
installed. However, if the URL is HTTP, it will pass through 

8.1.2.2  Experiment/Testbed Monitoring Tool 

The Monitoring Tool is based on python and uses a Mongo DB to store data in an 
edited way. This is done to prepare the data for other analysis and also to visualize it 
in a proper way. 
As the tool is not running in a WILDFLY container, it will be integrated into the portal via 
an iframe. For this the nginx server, that is serving the portal, is configured to map the 
monitoring tool into the namespace of the portal. The configuration also makes sure 
that it is only available via HTTPS. This integrates it also into the security framework, 
so that users cannot bypass it. 

8.1.2.2.1 System Requirements 

Following Table 20 list requirements for monitoring tool for the correct execution. 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  101 

 

Table 20: System Requirements for Experiment/Testbed Monitoring Tool  
Requirements Version 
python 2.7.x 
python-virtualenv 1.11.4 
mongoDB >2.4 

8.1.2.2.2 Dependencies 

Following Table 21 list python dependencies that are needed for monitoring tool for the 
correct execution 

Table 21: Dependencies for Experiment/Testbed Monitoring Tool 
Requirements Version 
Flask 0.12.2 
Flask-RESTFUL 0.3.6 
PyYAML 3.12 
pymongo 3.5.1 
gevent 1.2.2 
requests-futures 0.9.7 
python-dateutil 2.6.1 

 

8.1.2.2.3 Install and Run 

In the following section, we list all necessary installations and configurations that 
should be performed. 

• Python and virtualenv creation 

The monitoring tool is based on python and so needs a python environment. This is 
shipped and preinstalled in all major Linux distributions. As the tool is using several 
python modules that are installed via pip, a virtualenv is used to isolate the needed 
modules and to not interfere with the modules that are installed system-wide. 
To create a virtualenv, the package python-virtualenv is needed: 
$ sudo apt install python-virtualenv 

Then the virtualenv can be created: 
$ virtualenv ${HOME}/.virtualenv/testbed-monitoring 

To activate the virtualenv, either it has to be activated or its python binary can be 
directly used to run a python file. 
$ source ${HOME}/.virtualenv/testbed-monitoring/bin/activate 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  102 

 

The dependencies need to be installed in the virtualenv: 
 

(testbed-monitoring)$ pip install –r 
${TESTBED_MONITORING_HOME}/requirements.txt 

• mongoDB 

The monitoring tool uses a Mongo database in order to store the extracted data in an 
edited way. The data will be transformed and all not needed parts will be removed. 
To install mongoDB: 
$ sudo apt install mongodb 

• Upstart 

To control the monitoring tool as a service, an upstart script is used. It can be invoked 
to start and stop the system and also to enable the automatic start of the system. 
The Upstart script that is used: 
description "Testbed Monitoring" 

start on runlevel [2345] 

stop on runlevel [016] 

setuid ubuntu 

setgid ubuntu 

script 

 export HOME=/home/ubuntu 

 cd ${HOME}/fiesta-tools/testbed-monitoring 

 exec ${HOME}/.virtualenv/testbed-monitoring/bin/python run.py 

end script 

The testbed monitoring is installed under /home/Ubuntu/fiesta-tools/testbed-
monitoring. The run.py file, which is the start file will be invoked directly with the 
python binary from the virtualenv. 

• Nginx configuration 

As mentioned before, to enable the monitoring tool to be accessible in the portal, some 
changes in the nginx configuration are necessary. The monitoring tool is configured to 
listen to port 4000 for HTTP connections. The basic namespace is /dashboard. So, 
the nginx configuration needs to map in its HTTPS configuration the /dashboard 
namespace to the Monitoring tool by using proxying. 
The relevant entry inside of the /etc/nginx/sites-enabled/default file: 
location /dashboard { 

proxy_set_header   X-Real-IP $remote_addr; 



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  103 

 

proxy_set_header   Host      $http_host; 

proxy_pass         http://127.0.0.1:4000; 

proxy_read_timeout 90; 

} 

It will simply pass all URIs starting with dashboard directly to the Monitoring Tool. 
• Monitoring Tool configuration 

The Testbed Monitoring Tools config file, which can be found under 
{TESTBED_MONITORING_HOME}/config.yml, is a yaml file, which can be configured 
in an easy way: 
monitoring: 

  iot_registry: http://localhost:8080/iot-registry/api 

  testbeds_update_time: 120  # minutes 

  sensors_update_time: 120  # minutes 

  observations_update_time: 10  # minutes 

  observation_time_span: 7  # days 

  max_query_span: 1  # days 

web: 

  host: 0.0.0.0 

  port: 4000 

  overall_duration: 1 

db: 

  host: localhost 

  port: 27017 

  db_name: monitoring 

  drop: False 
In the monitoring section the tool itself can be configured, web is for adapting the web 
server and db is used to configure the access to the mongoDB. 
The monitoring section has the URI to the internal port of the IoT-Registry. The fields 
*_update_time are to configure the interval of the internal tasks to query the IoT-
Registry. The field observation_time_span is to limit the maximum days the Testbed 
Monitoring Tool will store observations for each sensor. The field max_query_span is 
used to limit the maximum query range of the IoT-Registry to not ask for too much 
data.  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  104 

 

9 CONCLUSION 

This is the last deliverable with respect to the tasks within WP4. This deliverable reports 
advancements done within Task 4.4 and Task 4.5 and updates that were performed to 
[1]. Via this deliverable, we provide our advancements with respect to how 
experimenters could create, deploy and manage experiments, giving as well an 
overview about the FIESTA-IoT portal with respect to experimenters. Note that the 
portal is not only limited to the tools that are applicable to experimenters but it also 
supports tools available for testbed owners (some of which are presented in [15]). 
Further, other user roles defined within FIESTA-IoT framework would also use the 
FIESTA-IoT portal.  
This deliverable mainly reports issues identified by the reviewers and provides new 
tools that were developed. Nonetheless, the EEE, EMC and Portal were updated to 
support new functionalities, APIs and tools to help experimenters achieve their goals. 
The updates mainly relate to inclusion of new accounting API within EEE, more 
restricted APIs now being public, and revamped UI for EMC and Portal.  Other than 
the updates to the afore-mentioned tools, within this deliverable, new tools such as: 
Experiment editor using which experimenters can create configuration/DSL for EEE, 
Experiment/Testbed monitoring tool using which experimenters can monitor the status 
of the testbed etc., Experiment Data receiver using which experimenters can receive 
the resultset, Experiment Result store using which experimenters can download 
previously available resultset are also reported. 
It is worth mentioning that the provided/discussed tools will be updated on need basis 
after analyzing the requirements, if any, from the Open Call/other participants. Of 
course, continuous support, integration and bug fixing will be inevitably part of it. As 
the tools are also available to public, these tools are well documented and the APIs 
within are supported by the documentation where the experimenters can possibly 
execute the APIs if they have the right credentials.  
  



Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments – V2 

 

Copyright  2017 FIESTA-IoT Consortium  105 

 

REFERENCES 

[1] FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing IoT 
Experiments,” 2017. 

[2] FIESTA-IoT, “Deliverable 2.1: Stakeholders Requirements.” 
[3] FIESTA-IoT, “Deliverable 2.3: Specification of Experiments, Tools and KPIs.” 
[4] FIESTA-IoT, “Deliverable 5.1: Experiments Design and Specification.” 
[5] FIESTA-IoT, “Deliverable 5.2: Experiments Implementation, Integration and 

Evaluation,” 2017. 
[6] FIESTA-IoT, “Deliverable 3.6: Concept and Development for IoT Data Analytics 

and IoT Stream and Service Management,” 2017. 
[7] FIESTA-IoT, “Deliverable 4.6: Tools and Techniques for Managing Interoperable 

Data sets,” 2017. 
[8] FIESTA-IoT, “Deliverable 4.1: EaaS Model Specification and Implementation,” 

2016. 
[9] FIESTA-IoT, “Deliverable 2.4: FIESTA-IoT Meta Cloud Architecture,” 2015. 
[10] FIESTA-IoT, “Deliverable 4.4: Authentication, Authorization, Data Protection and 

Reservation of Resources V2,” 2017. 
[11] A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage Dictionary 

of the English Language. Boston: Houghton Mifflin, 1992. 
[12] FIESTA-IoT, “Deliverable 4.2: EaaS Model Specification and Implementation,” 

2017. 
[13] FIESTA-IoT, “Deliverable 3.1: Semantic models for testbeds, interoperability and 

mobility support and best practices,” 2016. 
[14] FIESTA-IoT, “Deliverable 6.2: Certification suite V1,” 2017. 
[15] FIESTA-IoT, “Deliverable 3.3: Specification and implementation of common 

Testbed interfaces,” 2016. 
[16] FIESTA-IoT, “Deliverable 3.4: Specification and implementation of common 

Testbed interfaces,” 2017. 
 


	/
	HORIZONS 2020 PROGRAMME
	Research and Innovation Action – FIRE Initiative
	Call Identifier: 
	H2020–ICT–2014–1
	Project Number:
	643943
	Project Acronym:
	FIESTA-IoT
	Project Title: 
	Federated Interoperable Semantic IoT/cloud          Testbeds and Applications
	Infrastructure for Submitting and Managing IoT Experiments – V2
	Document Id:
	FIESTA-IoT-D4.8-20171130-Draft
	File Name:
	FIESTA-IoT-D4.8-20171130-Draft.pdf
	Document reference:
	Deliverable 4.8
	Version:
	Draft
	Editor: 
	Rachit Agarwal/Nikolaos Georgantas/Valerie Issarny
	Organisation: 
	Inria
	Date:
	30 / 11 / 2017
	Document type:
	R, DEM 
	Dissemination level:
	PU
	Copyright ( 2017 National University of Ireland - NUIG / Coordinator (Ireland), University of Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom), Unparallel Innovation, Lda - Unparallel (Portugal), Easy Global Market - EGM (France), NEC Europe Ltd. NEC (United Kingdom), University of Cantabria UNICAN (Spain), Fraunhofer-FOKUS (Germany), Research and Education Laboratory in Information Technologies  - Athens Information Technology - AIT (Greece), Sociedad para el desarrollo de Cantabria – SODERCAN (Spain), Ayuntamiento de Santander – SDR (Spain), Korea Electronics Technology Institute KETI, (Korea). The European Commission within HORIZON 2020 Program funds the FIESTA-IoT project.
	DOCUMENT HISTORY
	Rev.
	Author(s)
	Organisation(s)
	Date
	Comments
	V01
	Rachit Agarwal
	Inria
	2017/04/18
	2017/09/04
	2017/09/20
	2017/09/20
	2017/10/24
	Initial version of the Document
	Updated TOC
	Section: Relation with the Functional Architecture, Starting Service with EEE, Experiment Deployment Services, Execute Experiment
	Section: EEE and Receiver Requirements, EEE Monitor APIs Specification, EEE Accounting APIs Specification, Experiment Data Receiver specification
	Section: Experiment Management Console
	Introduction
	Elias Tragos
	NUIG
	2017/10/26
	NUIG Contributions V1
	Ronald Steinke
	FOKUS
	2017/10/27
	2017/10/30
	FOKUS contributions V1
	FOKUS contributions V1 updates
	Tarek Elsaleh
	UNIS
	2017/10/27
	UNIS contributions V1
	Ramnath Teja Chekka
	KETI
	2017/10/31
	KETI contributions V1
	V02
	Rachit Agarwal
	Inria
	2017/11/01
	V2 Generated
	Ramnath Teja Chekka
	KETI
	2017/11/03
	KETI contributions V2
	Ronald Steinke
	FOKUS
	2017/11/07
	FOKUS contributions V2 Updates
	Tarek Elsaleh
	UNIS
	2017/11/07
	UNIS contribution V2 Updates
	V03
	Rachit Agarwal
	Inria
	2017/11/08
	V3 Generated
	Ronald Steinke
	FOKUS
	2017/11/14
	KETI contributions V3
	Ramnath Teja Chekka
	KETI
	2017/11/14
	FOKUS contributions V3
	V04
	Rachit Agarwal
	Inria
	2017/11/14
	V4 Generated, Conclusion
	Tarek Elsaleh
	UNIS
	2017/11/15
	UNIS Contribution V4
	Elias Tragos
	NUIG
	2017/11/15
	NUIG contributions V4
	V05
	Rachit Agarwal
	Inria
	2017/11/15
	Final version ready for review
	Flavio Cirillo
	David Gomez
	Paul Grace
	NEC
	UC
	ITInnov
	2017/11/21
	2017/11/21
	2017/11/22
	TR Review
	TR Review
	QR Review
	V06
	Rachit Agarwal,
	Elias Tragos, Tarek Elsaleh
	Ronald Steinke
	Ramnath Teja chekka
	Inria
	2017/11/25
	Addressed comments
	Rachit Agarwal
	Inria
	2017/11/28
	Deliverable ready for submission
	Draft
	Elias Tragos
	NUIG
	2017/11/30
	Draft for submission
	Overview of Updates/Enhancements over D4.7
	Added new components and divided the section into two sections (section 2 and section 3)
	TABLE OF CONTENTS
	1 Executive Summary/Introduction 7
	2 Relation with the Functional Architecture 9
	3 Requirements 10
	3.1 Experiment Modelling 10
	3.2 EEE and Receiver 11
	3.3 Experiment Execution Result-set Data store 13
	3.4 Experiment/Testbed Monitoring Tool 13
	3.5 Portal 15
	4 FIesta-IoT Technical Architecture 16
	4.1 Sequence Diagram 19
	4.1.1 Starting Service with EEE 19
	4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool 20
	5 Other Tools 22
	5.1 Experiment Result Store (ERS) 22
	5.2 Experiment Data Receiver 22
	5.3 UI Tools 23
	5.3.1 Experiment Editor 23
	5.3.2 Experiment Management Console (EMC) 24
	5.3.3 Reasoning tool (inference Tool) 26
	5.3.4 FIESTA-IoT Acquisition Toolkit 45
	5.3.5 Experiment/Testbed Monitoring Tool 47
	6 Experimentation Services and API Specification 53
	6.1 Experiment Deployment Services 53
	6.1.1 Scheduling APIs 53
	6.1.2 Subscription APIs 63
	6.1.3 Polling APIs 65
	6.2 Experiment Management Services 67
	6.2.1 EEE Monitor APIs 67
	6.2.2 EEE Accounting APIs 70
	6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs 71
	6.3 Experiment ResultSet Storage APIs 76
	6.4 Documentation of APIs 78
	7 Prototype 79
	7.1 PORTAL 79
	7.1.1 Signing in 79
	7.1.2 Menus 80
	7.2 Usage 84
	8 Implementation 93
	8.1.1 Source Code Availability 93
	8.1.2 Components 93
	9 Conclusion 104
	References 105
	LIST OF FIGURES
	Figure 1: FIESTA-IoT Functional Architecture Components addressed in this deliverable are marked in green 9
	Figure 2: FIESTA-IoT Technical Architecture (Full View) 17
	Figure 3: FIESTA-IoT Technical Architecture (Experimenter view) 18
	Figure 4: Sequence Diagram for starting an Experiment 20
	Figure 5: Bootstrapping of the Testbed monitoring 20
	Figure 6: User Interaction with the Testbed Monitoring 21
	Figure 7: Experimenter interactions with ERS 22
	Figure 8: Experiment Editor initial UI 23
	Figure 9: FEMO XML Preview 24
	Figure 10: Experiment Management Console 25
	Figure 11: Create Rule Screen 26
	Figure 12: Create new Rule when Semantic expert 27
	Figure 13: Create new Rule when Semantic expert –Text view input 28
	Figure 14: Create new Rule - Non-Semantic Expert 30
	Figure 15: Example of Rule details 32
	Figure 16: Edit Rule Information 33
	Figure 17: Edit Rule content 34
	Figure 18: Rule Registration home 35
	Figure 19: Register Rule- Available Rules 36
	Figure 20: Register Rule - Detail Rule content 37
	Figure 21: Register Rule - Select Sensor 38
	Figure 22: Register Rule – detailed information 39
	Figure 23: User Interface for editing a rule registration 40
	Figure 24: Rule Execution Home page 41
	Figure 25: User Interface for creating a new Rule execution 42
	Figure 26: Execute Rule on sensor base on specific time 43
	Figure 27: Re-Execute Rule 45
	Figure 28: Analytics Toolkit Tabs 46
	Figure 29: Analytics Input Tab 46
	Figure 30: Analytics Toolkit Result 47
	Figure 31: The Testbed Monitoring Tool embedded in the FIESTA-IoT portal 48
	Figure 32: Testbed Monitoring component in the FIESTA-IoT Platform 49
	Figure 33: Portal welcome page 79
	Figure 34: Portal login page 80
	Figure 35: Portal statistics page 82
	Figure 36: Experiment Template FEMO 85
	Figure 37: Experiment template FISMO 85
	Figure 38: Experiment Template Query 86
	Figure 39: Portal Experimenter Menu 87
	Figure 40: Experiment Register Client 88
	Figure 41: Experiment Register Client - Experiment Browser 88
	Figure 42: Part 1: Experiment Detail Pane 91
	Figure 43: Part 2: Associated FISMOs Pane 91
	Figure 44: Part 3: Subscription Pane 91
	LIST OF TABLES
	Table 1: Requirements addressed by Experiment Modelling tool (Experiment Editor) 10
	Table 2: Requirements addressed by EEE and Receiver 11
	Table 3: Requirements addressed by ERS 13
	Table 4: Requirements addressed by Experiment/Testbed Monitoring Tool 13
	Table 5:Requirements addressed by Portal 15
	Table 6: Query for creating a Rule 28
	Table 7: SPARQL query or a Rule 31
	Table 8: SPARQL Query 44
	Table 9: SPARQL Query 50
	Table 10: SPARQL Query 51
	Table 11: Access roles per portal menu 83
	Table 12: System Requirements for Experiment Editor 93
	Table 13: Dependencies for Experiment Editor 94
	Table 14: System Requirements for Portal 95
	Table 15: Dependencies for Portal 95
	Table 16: System Requirements for ERS 96
	Table 17: Dependencies for ERS 97
	Table 18: System Requirements for Data Receiver 98
	Table 19: Dependencies for Data Receiver 99
	Table 20: System Requirements for Experiment/Testbed Monitoring Tool 101
	Table 21: Dependencies for Experiment/Testbed Monitoring Tool 101
	TERMS AND ACRONYMS
	1 EXECUTIVE SUMMARY/INTRODUCTION
	This deliverable is a second iteration [1]. It is noteworthy to assert that the current deliverable should not be considered as a standalone version but instead read along with deliverable [1]. This document provides an update to the reported tools and also provides technical details on newly developed tools that support experimentation over the FIESTA-IoT Meta Cloud (data store). Some key updates performed in the already reported tools, such as Experiment Execution Engine (EEE), Experiment Management Console (EMC) and Portal include:
	 Updates to the API (Application Programming Interface) of Experiment Execution Engine, 
	 Updates to the User Interface (UI) of EMC to support:
	o Experimenters to get/know the required IDs for the getting data from Experiment Result Store (ERS)
	o Delete the scheduled FISMO (FIESTA-IoT Service Model Object) from EEE. Note that throughout this deliverable we will use FISMO and FEMO (FIESTA-IoT Experiment Model Object) but they should be considered as a Service (FISMO) within an Experiment (FEMO). 
	 Updates to the Portal include:
	o A newly designed interface to address issues raised previously, such as an enhanced menu that is based on the type of user (Experimenter, Testbed Admins and FIESTA-IoT Admins) and streamlined layout
	o Availability of new tools for different types of users of FIESTA-IoT, and
	o Support for the mobile version of portal. 
	Besides the above modifications and updates, we also report technical details on the newly developed and functional modules, such as Experiment editor, ERS and Experiment/Testbed Monitoring tool. Note that some technologies that we described in [1] towards building tools, such as Experiment Editor, are now not used to build the tool due to some limitations with regards to the handling of multiple users. 
	Within this deliverable, as reported in [1], we start by analysing the requirements collected in [2] for the developed tools, either new or existing, those coming from in-house experimenters [3], [4], Open Call (OC) participants and the validation done by in-house experimenters [5]. 
	As this is the last technical deliverable in terms of tools provided under Work Packages 3 and 4 (WP3 and WP4), it is also essential that we report how the FIESTA-IoT platform technical architecture looks like and provide a brief overview of the interactions among those tools that facilitate experimentation over the FIESTA-IoT infrastructure. Note that, within this deliverable, we only focus on the part of FIESTA-IoT platform technical architecture that focuses on experimenters. Following the architecture, we provide updated sequence diagrams for “starting the execution” of the experiment using EEE. The update mainly reflects the integration of FIESTA-IoT Analytics Toolkit (FAT) and the possibility of scheduling the experiment on IoT-Registry or FAT. 
	For the monitoring tool, a technical description of it was provided in [6]. In this deliverable, however, we present the user side of the tool and focus on the UI. Additionally, we describe the new tools (those that were not reported before) such as ERS, Experiment Data receiver and UI interface for tools such as Experiment editor, EMC and Reasoning tool to name a few. After this description, we then list the APIs that play an essential role in fulfilling the experimenters’ needs. These APIs mainly include the scheduling, subscription, polling, monitoring, accounting and data download APIs provided by various tools such as EEE, monitoring and ERS tools. 
	To meet the users’ expectations, performance analysis of the tools is an essential part once the tools are developed. As all the tools that support development, deployment and management of the experiment are either UI tools or delegate the requests to IoT-Registry, analysis of IoT-Registry with respect to the experimenters’ need is essential. Since this assessment has been already carried out and been reported in [7], we do not report it here.
	A simple mock-up walk-through of the FIESTA-IoT portal (that is now supported in various browsers either on Desktop or on Mobile) follows, with the aim to clearly explain to experimenters the workflow and steps to be performed in order to execute an experiment. Note that the steps reported in this deliverable only focus on one interaction path within the technical framework. However, we do not report workflow for experimenters that directly access IoT-Registry, rather we report the workflow that an experimenter need to follow when interacting with FIESTA-IoT tools such as Experiment Editor, EMC, EEE that facilitate the execution of the experiment.
	A clear installation steps for the tools and how to use the above-mentioned components follow the section. The conclusion concludes the deliverable.
	We also refer the audience to [8] and [1] in order to know more about WP4, its scope, related tasks and targeted audience.
	2 RELATION WITH THE FUNCTIONAL ARCHITECTURE
	The functional architecture of the FIESTA-IoT platform is described in [9]. An updated version of the same is available as in Figure 1. In relation to the platform, in this deliverable we are mainly focused on describing functionalities (other than those mentioned in [1]) that are now supported by both the FIESTA-IoT functional architecture and the FIESTA-IoT technical architecture. To provide a comprehensive view about the tools that are supported by the functional architecture and are reported in this deliverable, we refer readers to Figure 1. These tools are: EEE, Experiment Editor, Experiment Registry Module (ERM), EMC, ERS, and Experiment/Testbed Monitoring (performance monitoring). It should be noted that we have moved some of the tools already reported within WEB Browsing and Configuration Functional Component (FC) outside the FC. We mainly describe interactions between the components that enable experimentation over the FIESTA-IoT platform as part of the technical architecture (Section 4). As for the above-mentioned components, we present them in the next sections along with more requirements.
	/
	Figure 1: FIESTA-IoT Functional Architecture Components addressed in this deliverable are marked in green
	3 REQUIREMENTS 
	In this section we provide how the requirements those proposed in [2] are fulfilled by the developed tools.
	3.1 Experiment Modelling

	Table 1 lists requirements addressed by Experiment Editor.
	Table 1: Requirements addressed by Experiment Modelling tool (Experiment Editor)
	For Experiment Modelling the Experiment Editor addresses the above three requirements. We next provide details so as to how these requirements were met.
	 The experiment editor provides the experimenters a UI tool to build experiments (FEMO), services (FISMO) and Queries that would allow them to easily build task thereby fulfilling the requirements 24_NFR_ACC_Tools_planning_auto_tasks and32_NFR_ACC_Provide_dev_deploy_manag_config_tools. The tool itself is explained later in the Section 5.3.1 while the workflow is provided in Section 7.2.1.2.1. 
	Note that the requirement 
	32_NFR_ACC_Provide_dev_deploy_manag_config_tools is also fulfilled by EEE as it deploys the configuration (in other words FEMO) that is created using Experiment Editor.
	 With respect to the experiments, the tool also provides them the option to manage and configure the experiments (FEMOs) and services (FISMOs) thereby fulfilling the requirement 35_NFR_PLA_Manage_resources_in_query_or_experiment. Note that using the tool we allow the experimenters to manage their experiment. This is done using the capabilities that the UI provides and interactions the tool does with the ERM. As this tool is a UI based tool, the tool provides methods to visualize the needed attributes in the experiment. 
	3.2 EEE and Receiver

	Beyond those described in the previous version of the deliverable [1], Table 2 lists requirements that are further satisfied by EEE and Receiver.
	Table 2: Requirements addressed by EEE and Receiver
	The EEE is a component that satisfies part of the non-functional requirement 32_NFR_ACC_Provide_dev_deploy_manag_config_tools defined in [2]. Further, EEE is able to:
	 Schedule at a defined rate a FISMO (a service Model that describes the experiment consisting of entities such as experiment control, details about the query, see [8]) as a Job on the Meta Cloud with minimum possible delay: this requires the EEE to read the QuerySchedule entity that is a part of FISMO, connect to the Meta Cloud and use the Meta Cloud API to execute the query defined in the Query attribute of the FISMO. EEE provides experimenters a functionality to subscribe to any services (FISMOs) on top of their own FISMOs, could request data in different ways for example, based on time period, and could poll for certain data (event based). This satisfies the 11_FR_ACC_Request_data_different_ways. Different EEE APIs that support this requirement are reported in Section 6.1.
	 In order to efficiently serve the experimenters with the data with minimum delays, EEE internally stores the service requests rather than contacting ERM component. Thus, EEE satisfies the 41_NFR_PLA_Minimize_processing_delay.
	 Schedule multiple FISMOs on the Meta Cloud simultaneously. This satisfies 53_NFR_PLA_Execution_concurrent_services.
	 Poll a service to get the data: the EEE enables the execution of the query defined in the Query entity of the FISMO once and on demand.
	 After scheduling, EEE maintains a state variable of the scheduled job: this help experimenters to know the state of their experiment. 
	 EEE maintains a log of executed jobs: this enables an experimenter to know how many times a specific FISMO has been successfully executed.
	 The Execution logs and state variables (processing information) is shown to the experimenter via EEE. This targets the 42_NFR_PLA_Data_generated_from_processing_info and is further complemented by the monitoring tool.
	 EEE schedules FISMO queries on IoT-Registry or FAT in an automated manner where experimenters are needed to just start/stop the process on EEE. This feature enables 24_NFR_ACC_Tools_planning_auto_tasks.
	 Provide a mechanism to the experimenters to subscribe/unsubscribe to a certain already discoverable FISMO: this enables experimenters to utilize already existing FISMOs in their experiments. In order to subscribe, the experimenter should provide the experimentOutput attribute in the FISMO so that the EEE could deliver the output accordingly.
	 On top of subscription, if an owner deletes a FISMO, then the subscribers will not be notified about the deletion: this allows subscribers to keep execution of the subscribed FISMO ongoing until the FISMO is unsubscribed. 
	 Be able to delete any experimenter related executing job from the EEE along with its history.
	 EEE is able to invoke related widgets like FIESTA-IoT Analytics toolkit besides just interacting with IoT-Registry.
	 EEE is able to send data in different formats required by experimenters.
	 For a large resultset paging of the result is provided: this enables the 23_NRF_ACC_Page_in_subrequests. This is achieved by the Sending module of the EEE that breaks the large datasets into multipart before sending it to the Receiver that concatenates these parts into one.
	 The EEE is stable and satisfy the 51_NFR_PLA_FIESTA_highly_reliable.
	 On top of above, all the APIs of the EEE are well documented (see Section 6.4) and made available to the experimenters so that they can understand the working of the EEE better. This ensures fulfilment of 30_NFR_ACC_FIESTA_well_documented with respect of EEE.
	3.3 Experiment Execution Result-set Data store

	Table 3: Requirements addressed by ERS
	The fit criterion with respect to the only requirement (listed in Table 3) satisfied by ERS states that “FIESTA-IoT is able to store data from experiments during the requested period and process any experiment that did not expire”. The ERS addresses this requirement by providing a storage facility for experimentation results (or data), which can be retrieved by the experimenter at a convenient time. Section 5.1 explains how this storage facility works.
	3.4 Experiment/Testbed Monitoring Tool

	Table 4: Requirements addressed by Experiment/Testbed Monitoring Tool
	The Experiment/Testbed Monitoring Tool satisfies parts of the non-functional requirement 35_NFR_PLA_Manage_resources_in_query_or_experiment. Additionally, the non-functional requirements described in 40_NFR_PLA_Process_feedbacks and 42_NFR_PLA_Data_generated_from_processing_info were addressed. Further, the Experiment/Testbed Monitoring tool is able to:
	 Show the monitored testbeds in a total view and showing the number of active resources per testbed. Additionally, it shows every sensor per testbed with metadata and latest observations. This addresses partially 35_NFR_PLA_Manage_resources_in_query_or_experiment
	 Process the gathered data of the testbeds used for monitoring in order to find not working resources. The result of the processed data shall be available via the API as well as the collected and transformed data. This addresses mainly the two requirements 40_NFR_PLA_Process_feedbacks and 42_NFR_PLA_Data_generated_from_processing_info
	 Retrieving the data from the IoT-Registry and storing it in a transformed way into another database in order to prepare the data for the visualization and for providing it via the API. This assures 41_NFR_PLA_Minimise_processing_delay
	 Providing the summarized overview and the detailed view per testbed in a way that it is clear for the experimenter which information he/she is retrieving. This fulfils 22_NFR_ACC_Distinguish_type_of_data, 49_NFR_PLA_Reliable_time_sync, 64_NFR_RES_Resource_provide_characteristics and 65_NFR_RES_Resource_identified_code.
	 Using the additional IDs per stored resource but also linking to the original ID, which is used in the IoT-Registry. So not only the combined and transformed resources used in the Monitoring Tool can be addressed but also the original resources. This makes sure that 39_NFR_PLA_Info_testbed_agnostic_way is still fulfilled.
	 The API is documented but also self-explanatory in its usage, as required by 30_NFR_ACC_FIESTA_well_documented.
	 The API provides methods to mimic the same filtering methodology as it is used in the IoT-Registry, e.g., filtering resources by phenomena. This fulfils 15_FR_ACC_Discover_resources_by_characteristics.
	3.5 Portal

	Table 5:Requirements addressed by Portal
	The FIESTA-IoT portal plays the role of the user interface for all types of users. It incorporates interfaces for managing and handling all functionalities provided by the FIESTA-IoT platform. For logging in, a single security mechanism is used and the users are only required to login once, they get a token, initiating a session and then they get access to all functionalities, without the need to login separately (addressing the 20_FR_SEC_Experimenter_single-sign-on requirement) [10]. 
	The portal includes also modules for running automated tasks, especially for the registration of multiple resources (at once) or for scheduling the execution of experiments (addressing the 24_NFR_ACC_Tools_planning_auto_tasks requirement). 
	Additionally, the portal provides a simple visualization tool for the results of a query/experiment, so that experimenters can have a first look at the results. 
	Testbed providers and experimenters can also see real-time information about the testbeds and the registered resources, to see which are online and sending data and use it for debugging purposes (addressing the 35_NFR_PLA_Manage_resources_in_query_or_experiment requirement). 
	The FIESTA-IoT portal includes also a help section dedicated to the documentation of all tools, services and APIs for the experimenters and the testbed providers (addressing the 30_NFR_ACC_FIESTA_well_documented requirement).
	4 FIESTA-IOT TECHNICAL ARCHITECTURE
	A technical version of the FIESTA-IoT platform architecture is provided in Figure 2. Note that, within the scope of this deliverable we are only limited to describe those components that address the experimentation plane (upper part of the Figure 2). Figure 3 provides this view. We next provide a brief description of the functionality of the components: 
	 IoT-registry: This component is the cornerstone of the FIESTA-IoT platform. It is the module in charge of handling the semantic information that flows across the FIESTA-IoT platform. Basically, it undertakes the control of the triple-store and internally holds the overall semantic meta-repository. This component is already described in [7] thus it is not described in this deliverable.
	 Experiment Registry Management (ERM): It is the registry where all the experiments are stored. The Experiment Execution Engine and the Experiment Management Console use the ERM APIs to read the information stored about the experiment and take actions accordingly.
	 Experiment Management Console (EMC): It is the User Interface (UI) to the Experiment Execution Engine (EEE). Using this an experimenter can control the execution of the FISMOs beyond what is specified via FEDSpec (FIESTA-IoT Experiment Description Specification). Using EMC an experimenter can also know other related information about the experiment that he provided in the FEDSpec.
	 Experiment Execution Engine (EEE): Engine that executes the experimenter’s need on the IoT-Registry at a specified schedule. It defines a set of services/APIs that are essential for the execution of the experiment. The EMC uses EEE APIs to provide experimenters the execution related information.
	 Experiment Result Store (ERS): ERS stores the results that are not been sent to the experimenter due to any reason like unavailability of receiver etc.
	 Experiment Data Receiver (Receiver):  This component is usually executed on the experimenter side and not on FIESTA-IoT side. This component opens a channel for receiving data from EEE after the execution of the query.
	 Experiment Editor (Editor): This component enables experimenters to quickly create FEDSpecs and deploy them on the FIESTA-IoT platform. These FEDSpecs will then be read by EEE and executed accordingly.
	 FIESTA-IoT Analytics Toolkit (FAT): This component enables experimenters to execute data analysis techniques on datasets retrieved from IoT-Registry. 
	 FIESTA-IoT Monitoring: This tool allows experimenters to view basic statistics of the data available within FIESTA-IoT ecosystem. It also allows experimenters to know which testbeds are pushing data and how many resources are active in the moment.
	 Reasoning: this tool allows experimenters to define their own reasoning rules (or re-use rules defined by other experimenters) to run on top of the gathered data in order to extract some results. The rules are in the form of “if-then” and can be run on current or historical data streams.
	/
	Figure 2: FIESTA-IoT Technical Architecture (Full View)
	/
	Figure 3: FIESTA-IoT Technical Architecture (Experimenter view)
	An experiment is defined as “Experiment is a test under controlled conditions that is made to demonstrate a known truth, examine the validity of a hypothesis, or determine the efficacy of something previously untried” [11]. Nevertheless, as discussed previously we focus on data-oriented experimentation that can be performed on IoT data stored in the FIESTA-IoT platform. To support experimentation, tools that enable development, deployment and management of an experiment are developed and integrated to fulfil the execution of an experiment. To brief about the tools (see Figure 3), using a UI tool such as Experiment Editor an experimenter can create or develop the DSL for the experiment based on their needs. This DSL, also called as a FEDSpec, contains the specification for the EEE tool to execute the defined experiment. EEE essentially schedules or deploys the experiment on the FIESTA-IoT ecosystem based on the provided specifications. The Experiment Editor uses ERM to save a FEDSpec within the FIESTA-IoT ecosystem. EEE then reads the specifications to schedule the experiment on the FIESTA-IoT ecosystem. EEE is accompanied by an experiment controlling and management UI (Experiment Management Console or EMC) that enables experimenters to view execution summary and control the execution of their experiment. Once an experiment is executed by the EEE, the output is sent to experimenters, who have to to enable a Receiver on their side to get and handle the results. In case these results are not delivered to the experimenter, they are stored in an ERS repository where experimenters can download the results at will. Nonetheless, these tools are also complemented by tool-specific dedicated public APIs using which experimenters can also develop their own experiment workflow in case needed. In another case if an experimenter does not want to use such tools, they can create their own experiment execution like module and query directly the IoT-Registry using the public IoT-Registry APIs. 
	A description of some of the components such as EEE and EMC was provided in the V1 of the deliverable [1]. However, in this deliverable we focus on the components that were not described previously. In the next subsection, we present, modified sequence diagrams with respect to EEE functionality. We also show sequence diagrams for the new components. For components like FAT, deliverable [6] provides more technical details.
	4.1 Sequence Diagram 

	The addition of the data analytics, result storage, and Experiment modelling has led to a modified sequence diagram for the EEE. Note that sequence diagrams presented in V1 of this deliverable are still valid except the starting of a service. 
	4.1.1 Starting Service with EEE 

	The updates to “starting of a service” sequence diagram is provided below in Figure 4. Here, we introduce FAT, Sender module and the ERS. If an experimenter defines widget parameter in the FISMO object of the FEDSpec, [12], towards the usage of FAT EEE calls the FAT APIs instead of calling IoT-Registry APIs directly. FAT then calls the IoT-Registry APIs, gets the results and stores them in the ERS. Experimenters are then required to call the ERS APIs to get the results. In Section 6.3 we define the ERS APIs. Instead, if the experimenter does not specify the widget, the EEE calls the IoT-Registry API to retrieve the results of the query specified in the FISMO object. EEE upon a successful response from IoT-Registry, sends the results to the experimenter to the URL endpoint specified by them. If the send fails due to any reason, the EEE stores the results in the ERS for experimenters to later get the results.
	/
	Figure 4: Sequence Diagram for starting an Experiment
	4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool

	This section provides sequence diagrams for the Experiment/Testbed Monitoring tool.
	/
	Figure 5: Bootstrapping of the Testbed monitoring
	The bootstrapping of the Testbed Monitoring can be seen in Figure 5. First the tasks components “Update Testbeds”, “Update Sensors” and “Update Observations” for retrieving the needed data from the IoT-Registry are started by the “main” component. The retrieved data is transformed and is stored into the mongoDB. This makes sure that enough data is available for the UI and the API to serve requests properly.
	/
	Figure 6: User Interaction with the Testbed Monitoring
	In Figure 6 the two different options for retrieving either a page from the GUI or doing a request against the API are shown. The required login is for both operations necessary. Also for every operation the data will be retrieved from the mongoDB in order to serve the request in proper time.
	5 OTHER TOOLS
	5.1 Experiment Result Store (ERS)

	The ERS is a component within the Experiment Execution subsystem that provides a temporary storage mechanism for experiments executed in an asynchronous manner. This component allows experimenters to retrieve the results of their experiments at their convenience. It should be noted that currently a result is removed from ERS once the experimenter retrieves it.
	Figure 7 shows the interactions that an experiment undergoes for the data to be stored in the ERS. In the first step (as numbered in Figure 7), the experimenter invokes the EEE to process their experiment. In the second step, the EEE will in turn invoke an IoT service to retrieve a dataset. This invocation of IoT service consists of invoking components like FIESTA-IoT Analytics toolkit or IoT-Registry. In the third step, the EEE will typically handle the request and store the result in the ERS. In the case of the FAT service, FAT will forward the result dataset directly to the ERS. The Experimenters can then call the ERS API to retrieve for results of their experiments.
	/
	Figure 7: Experimenter interactions with ERS
	5.2 Experiment Data Receiver

	As a sample, FIESTA-IoT should provide an Experiment Data Receiver that should open a possibility for Experimenters to receive the data made available via EEE. Experimenters can use this tool on their dedicated servers to receive the data. The tool should be able to receive large data objects by the means of multipart file upload. Internally this tool should be able to then save the received data in particular location that is specified in the configuration of the tool. 
	5.3 UI Tools
	5.3.1 Experiment Editor


	The Experiment Editor is a UI tool that experimenters could use to model and edit an experiment. Once directed to the Experiment Editor, an experimenter would get a view as shown in Figure 8 with a rectangular block and a number (variable) of square blocks. The rectangle block contains:
	 a number denoting the number of FEMOs created by the experimenter, 
	 a search icon that is used to find the FEMO when domain of interest (DOI) is provided and
	 an “+” icon that represents “add a FEMO”, i.e., to create new FEMO. 
	Each square block represents a FEMO that the experimenter has previously created. The FEMO block consists of FEMO’s name, description, number of associated FISMOs and list of DOIs that are highlighted in different colour. Further, within each of these FEMOs’ specific “square block”, there would be three choices of operations that would represent (a) duplicate (b) edit, and (c) delete. 
	/
	Figure 8: Experiment Editor initial UI
	For the duplicate option, represented by the overlapping square boxes, by clicking on it would create a new FEMO with the same parameter settings as the original FEMO. The APIs that are used in the process are listed in the Scheduling API Specification Section 6.1.1. 
	Every FEMO can be edited. This can be done by clicking on the FEMO block or by clicking the “edit” icon. Once the parameters are changed, the experimenter can commit the changes by clicking on the save button as shown in Figure 36 (Experiment Template FEMO). The Edit feature is applied at the following three levels of experiment: FEMO, FISMO and Query Control. Once the changes are made at any given level, the Experiment Editor notifies the EEE and ERM about the state change of the experiment. Before “saving” the changes, the experimenter could review the changes using the “Preview” (as shown in the Figure 9) option available beside “Save” option.
	/
	Figure 9: FEMO XML Preview
	As stated before, an experimenter can delete an Experiment by clicking the “delete” icon on the FEMO block. This would trigger Experiment Editor to notify the EEE and ERM of any experiment termination.
	5.3.2 Experiment Management Console (EMC)

	The EMC is a UI where the experimenter could know about the status of their experiment(s). The EMC would list experiments associated to an experimenter. Upon selecting a specific FEMO, say “InriaExperiment” as in Figure 10, the details of the experiment should be presented to the experimenter. This includes FEMO details, associated FISMOs and other discoverable FISMOs. An experimenter should be able to see the experiment ID, name, description and domain of interest. On top of this, experimenters should have it handy the API through which they can download the experiment results that were not sent to them due to some errors. Towards this, a description or a footnote should be present that reflects this.
	The “Associated FISMO” tab shows the “meta” information about the FISMO. This “meta” information includes: 
	 The jobID of the FISMO if it is scheduled, if it is not scheduled then “Not Yet Scheduled” information is displayed, 
	 The name and description of the FISMO, 
	 Experimenters can also start/stop a particular FISMO. By default, all the FISMOs would have status set to “Not Yet Scheduled”. The experimenter needs to explicitly start the FISMO to schedule it in the EEE. This would change the status to “Scheduled” in the UI,
	 The “Start Now” and “Stop Now” only provide experimenters the information to either start the schedule or if the schedule already exists in the EEE then pause the schedule of the respective FISMO. 
	 The experimenters are be able to view the logs of the “Past executions”. This includes information like date-time when the FISMO was successfully executed with the size of the data consumed by the FISMO from the Meta Cloud.
	 An experimenter is able to delete any scheduled FISMO. In case a FISMO is not scheduled the experimenter is not able to delete the FISMO (i.e., they do not see the delete button). If deleted, the FISMO is deleted from the EEE along with all its references within EEE.
	 For “Subscribed” FISMOs (as such FISMOs are not owned), the relevant information is shown including ownership status as “subscriber” and option to unsubscribe the subscription. 
	 Nevertheless, other than the above functionality experimenters should also poll for results. 
	/
	Figure 10: Experiment Management Console
	The EMC should also provide an option for the experimenters to subscribe to already available FISMOs within the FIESTA-IoT ecosystem. As the FISMOs are already defined, the experimenter is able to:
	 View the existing FISMO of choice, 
	 Provide URL location where the results of the execution of the subscribed instance of the FISMO should be sent and
	 Subscribe the FISMO with the new URL location.
	Nonetheless, despite subscribing using the URL location, the experimenter should not be able to change any other parameter of the FISMO they subscribe to. 
	5.3.3 Reasoning tool (inference Tool)

	The FIESTA-IoT Reasoning component is an implementation of a semantic reasoner that works on top of the FIESTA-IoT platform. The reasoner engine was described in detail in Deliverable D3.6 [6], providing also details for the API for accessing the reasoning services. In this deliverable, we describe the UI developed within FIESTA-IoT and accessed through the portal, so that it can be used as a tool for experimenters regardless if they are experts in semantics or not. Along with this description, the readers are advised to read the respective Section 3.3 of D3.6 to become more familiar with the architecture of the reasoning engine. Briefly, with the reasoning tool the experimenters will be able to create inference rules in the form of expressions “if (condition) then (result)” for example:
	 If (temperature) > (25degrees) then (notify_hot)
	 If (speed) < (30km/h) then (notify_traffic)
	 If (temperature) < (19degrees) and (humidity) > (60%) then (notify_unhealthy)
	5.3.3.1  Rule Creation

	An experimenter could create new rules in two ways: as a semantic expert or as a non-semantic expert. These actions could be performed on the FIESTA-IoT portal, where there is a menu called “Reasoning”, which has 3 sub menus: Create Rule, Register Rule, and Execute Rule. Note that the tool can also be used as standalone via dedicated APIs, which were mentioned in [6].
	/
	Figure 11: Create Rule Screen
	5.3.3.1.1 Create new Rule – Semantic Expert

	The FIESTA-IoT Reasoning module provides a simple UI (see Figure 11) for enabling experimenters to easily write the rule on a text-view. For assisting the experimenters in this process, the UI also provides sensor information base on the selected quantity kind, so that experimenters can easily see information for the sensors, so that they have a more detailed view when they create their own rule. Here, information like sensor ID, sensor quantity kind, sensor unit of measurement, sensor latitude, sensor longitude or current sensor data is presented as shown in Figure 12 and Figure 13.
	/
	Figure 12: Create new Rule when Semantic expert
	/
	Figure 13: Create new Rule when Semantic expert –Text view input
	Experimenters can create a new simple rule with the “if then” logic within a query as shown in Table 6. In this example, we apply rule “if power_consumption>0.56 Watt then notify experimenter for high consumption”:
	Table 6: Query for creating a Rule
	After filling all the required information as in the UI (see Figure 12 and Figure 13), experimenters can click on the “save” button and store the rule in the FIESTA-IoT Reasoning database. Within FIESTA-IoT, by default all the created rules are public and available to all experimenters associated with FIESTA-IoT platform, hence all these rules can be re-used by other experimenters. When the rule is created successfully, the experimenter is redirected to the initial rule creation page, as shown in Figure 11.
	5.3.3.1.2 Create new Rule when Non-Semantic expert

	The FIESTA-IoT Reasoning tool also provides a simple UI for experimenters who are not familiar with semantics. To create a new rule, such experimenters would click on the “Create new rule – Non-Semantic Expert” button. This option is much easier when an experimenter does not have Semantic knowledge and wants to create new rules with the IF THEN logic (see Figure 14).
	//
	Figure 14: Create new Rule - Non-Semantic Expert
	An experimenter can click on the add-new-rule button “+ New Rule” to add a new rule or click on the remove icon “X” to remove it.
	The FIESTA-IoT Reasoning tool will use the information added by the experimenter for the selected quantity kind, and the rule logic in order to generate a rule template by creating a SPARQL query as shown in Table 7:
	Table 7: SPARQL query or a Rule
	When an Experimenter clicks on the “Save” button, this rule will be stored in the FIESTA-IoT platform and then it will be public and re-usable by other experimenters.
	5.3.3.1.3 Details of Rules

	On the list of rules (see Figure 11) available on the FIESTA-IoT Reasoning, an experimenter can view (for example Rule 14 as shown in the Figure 15) the details of any rule by clicking on the “View” icon.
	/
	Figure 15: Example of Rule details
	5.3.3.1.4 Edit a Rule

	The function for editing a rule is available only to those experimenters that have created the particular rule. This means, an experimenter is not allowed to change a rule created by other experimenters for security purposes.
	On the screen showing the list of rules (see Figure 11)  or on the rule details screen (see Figure 15), when an experimenter clicks on the “Edit” button, the screen for editing rules will be shown as in Figure 16 and Figure 17 (Note that in the Figure 17 an experimenter can edit the rule in the provided textbox):
	/
	Figure 16: Edit Rule Information
	/
	Figure 17: Edit Rule content
	5.3.3.2 Rule Registration

	After creating the rule template, an experimenter needs to first register the rule on a selected sensor before executing it. This can be done through the “Reasoning” menu on the portal by selecting the “Register Rule: sub menu. The following Figure 18 is shown:
	/
	Figure 18: Rule Registration home
	For security/privacy reasons, each experimenter can only see his own registered rules and not those of other experimenters.
	5.3.3.2.1 Register a rule

	When an experimenter clicks on the “+ Create new Register Rule” button, the Figure 19 is shown, where the experimenter can add information, such as the description of the registered rule, the quantity kind and the sensor upon which the rule will be executed, and also select the rule template to be used for this registration:
	/
	Figure 19: Register Rule- Available Rules
	As Figure 19 shows, an experimenter can select the rule template from the dropdown menu that shows all the created rules on the platform. By selecting one rule, its detailed information is shown in the “Rule content” field, as shown in Figure 20.
	/
	Figure 20: Register Rule - Detail Rule content
	After selecting the rule template, the next step for the experimenter is to select the sensor ID to register (the quantity is pre-filled according to the rule information) as shown in Figure 21.
	/
	Figure 21: Register Rule - Select Sensor
	After filling the required information on the form and clicking the “Save” button, the rule registration functionality is finished and the new rule is registered and available for execution.
	5.3.3.2.2 Detail Rule registration

	Another functionality on the initial screen that lists the existing rule registrations (as shown in Figure 11) is to see the details of a registered rule, by clicking on the “detail” icon (as shown in Figure 22).
	/
	Figure 22: Register Rule – detailed information
	5.3.3.2.3 Edit a Rule registration

	When experimenters want to edit a rule registration, they can click on the “Edit” button on the detail rule registration page or on the “edit” icon on the list of rule registrations screen. Then, the following is shown (see Figure 23):
	/
	Figure 23: User Interface for editing a rule registration
	The Experimenter can then edit the details of the registered rule, i.e. name, description, select new rule, select another sensor and then click “Save” to update all information on the FIESTA-IoT platform.
	5.3.3.3 Rule Execution

	The final step after creating and registering a rule is to execute it. The FIESTA-IoT platform provides three main functions for creating a “New execution”, performing a “Re-execution” and viewing the details of an execution. 
	A Rule execution is the function where the registered rule is executed upon the input sensor data, in order to create some inference data. The home screen of rule execution is shown in Figure 24
	/
	Figure 24: Rule Execution Home page
	5.3.3.3.1 Create a New Execution

	When an experimenter clicks on the “+ New Execution” button, the following form is shown (see Figure 25):
	/
	Figure 25: User Interface for creating a new Rule execution
	In this form, the Experimenter can create a new execution, by selecting a registered rule and setting the “Time for execution”, which can be either in the current measurement or in the measurements within a time range.
	5.3.3.3.2 New execution with current time

	This rule execution happens when the experimenter selects the “Current” option and clicks on the “Save” button. Then, the FIESTA-IoT Reasoning module will execute this registered rule (sensor, rule), giving the result of the execution, which can be either “true” (success) or “false”, together with other details, such as the start, end time, sensor id, rule content, original data, inference data, and full data.
	5.3.3.3.3  New execution with period or range of time

	When an experimenter selects the “Range” execute option, he will be able to select the starting and ending date of the measurements to be considered in this rule, as shown in Figure 26.
	/
	Figure 26: Execute Rule on sensor base on specific time
	The FIESTA-IoT Reasoning will execute a SPARQL query to retrieve sensor data as shown in Table 8:
	Table 8: SPARQL Query
	5.3.3.3.4 Re-Execution

	When an experimenter wants to repeat an execution of the rule, he can just click on the “Re-execute” button on the list of executions. Then, a similar form as with the rule execution will be shown (see Figure 27) and the user will be allowed to select if he wants to re-execute the rule on the current measurement or on a range of measurements.
	/
	Figure 27: Re-Execute Rule 
	5.3.4 FIESTA-IoT Acquisition Toolkit

	Other than being a web service, the FAT can also be accessed through a web UI. This interface allows an experimenter to interact with the FAT toolkit visually for single experiments. The page mainly consists of three tabs (see Figure 28). The first being the “Input”. This allows the user to provide the SPARQL query for the dataset and the methods/parameters to apply on it (see Figure 29). Once this is submitted the result is displayed in the “Result” tab (see Figure 30). A plot for certain methods will be provided in the third tab, which is under development.
	/
	Figure 28: Analytics Toolkit Tabs 
	/
	Figure 29: Analytics Input Tab
	/
	Figure 30: Analytics Toolkit Result 
	5.3.5 Experiment/Testbed Monitoring Tool 

	The Testbed Monitoring Tool is intended to provide FIESTA-IoT users with information about the data that is sent by testbeds and can be used by experimenters via the FIESTA-IoT portal.
	5.3.5.1 UI Specification

	The Testbed Monitoring is embedded in the portal as an iframe and can be used as every other component of the portal.
	/
	Figure 31: The Testbed Monitoring Tool embedded in the FIESTA-IoT portal
	As seen in Figure 31 the Testbed Monitoring can be found under the Tools section as Testbed monitoring.
	Its start page is the overview of all monitored testbeds. Here, the locations of the testbeds can be seen in a map and a table, which lists their name, the number of active sensors and total number of sensors, and the contact for each testbed. Here the total number of sensors means all registered sensors in the FIESTA-IoT platform belonging to this testbed and active sensors are resources that have an observation in the last 24 hours.
	By clicking on one of a testbed, a detailed view lists all its underlying sensors and their locations in the map. For every sensor, the internal ID of the sensor used by the Monitoring Tool, the quantity kind, the last observation, the unit and the location are listed. The quantity kind and unit are using the m3-lite Taxonomy [13]. If a sensor is clicked, a modal view pops up, and shows a graph of the latest observations of this sensor and the sensor ID that is used by interacting with the IoT-Registry.
	FIESTA-IoT admins can open the settings view where testbeds can be enabled for showing in the UI or disabled again. The Monitoring Tool provides a notification system. This can be used to receive a notification mail, when a testbed reaches a predefined state, e.g., the number of active sensors reaches a threshold. Experimenters can use this if they find a testbed with problems and want to get informed when it is ready to be used again. By the time writing this deliverable, this function was not yet implemented.
	More detailed information about the usage of the Monitoring Tool can be found in Deliverable 3.6 [6].
	5.3.5.2  Implementation

	The system is integrated into the platform as an additional component.
	/
	Figure 32: Testbed Monitoring component in the FIESTA-IoT Platform
	As seen in Figure 32, the monitoring component connects to the Mongo DB and uses it for storing its data. It is also connected to the IoT-Registry in order to querying data of the platform. In addition, the monitoring tool asks the OpenAM service to use the information of every logged-in user to get the role of it and adjust the view.
	5.3.5.2.1 General Procedure

	The general procedure of the Monitoring tool is the following. In the beginning the configuration is read and the components like tasks, the database connection and the webserver are properly configured.
	In the initialisation phase the background tasks will be started. These tasks are mainly to query the IoT-Registry for the relevant information like testbeds, resources and observations. In the future, tasks regarding analysis will be started in the beginning. Afterwards the Flask server is started for serving the GUI and the API.
	5.3.5.2.2 Bootstrapping

	The bootstrapping is done by the tasks that are related to the IoT-Registry. In this phase, the database will be cleaned when it is configured to do so. If not, the database will be searched for the latest observation time in order to properly set up the query for following observations. The tasks for updating testbeds and resources information will be activated. They will retrieve all relevant data from the IoT-Registry and store it into the database. The tasks are configured to be run on an interval base. When this is done, the task for querying observations is done. This task will use either the latest stored observation or a pre-configured time span in order to start the querying for observations. The retrieval of observations is done in smaller steps until it reaches the actual time and starts normal interval based updates. After this initial bootstrap, the database is filled with the initial data and tasks like analysis and the webserver will be started.
	5.3.5.2.3 Querying the IoT-Registry

	As the Monitoring tool is deployed on the same machine as the IoT-Registry, for retrieving the testbeds information, the IoT-Registry API are used to directly retrieve the testbed names and IRIs (Internationalized Resource Identifier).
	The gathering of all resources and observations is done via executing SPARQL queries. An example query to retrieve all sensors is provided in Table 9
	Table 9: SPARQL Query
	Using the query, a search is performed for sensors that have a unit and a quantity kind. The sensor also has to have a testbed deployment and has to be on a platform that has a location. The deployment is used to determine afterwards to which testbed the sensor belongs. For every sensor the type, the unit, the quantity kind, the testbed and the location are stored into the database. Table 10 lists a sample query for retrieving observations:
	Table 10: SPARQL Query
	Using the query, all observations are collected. For each observation: the related sensor, the time and the value is also gathered. The observations will be stored for every sensor in an array. For each observation, the value and the timestamp are only stored, other meta information like unit is retrieved from the sensor itself.
	To limit the time to a specific interval, the IoT-Registry API supports setting the time boundaries per URL query parameters in the following way:
	POST <OBSERVATIONS_QUERY_URL>?from=<FROM>&to=<TO>
	Where the query url is /iot-registry/queries/execute/observations and <FROM> and <TO> are timestamps in the form ‘YYYYMMDDHHmm’. See [7] for more details.
	5.3.5.2.4 Database operations

	The mongoDB is accessed via the pymongo module that maps the basic operations provided by the database to python. The tasks that will query the IoT-Registry are using the database to store all information that will be later consumed by other components of the tool.
	The webserver that provides the GUI and the API is using the database to get the information, transform it in the required form and serve it.
	5.3.5.2.5 UI tasks

	The webserver fulfils two kinds of operations. The first is to provide the web sites in order to see the overview of all operations and also to present the detailed view of any testbed. The other is to provide an API for the data that is stored into the database.
	5.3.5.2.6 Requesting OpenAM

	In order to generate a specific view per user role in the UI, the monitoring tool uses the security component of the FIESTA-IoT platform. The UI is embedded in the portal UI that is protected by the security component. After a user is logged-in, a header is set for every further call. The monitoring tool uses this header in order to query the role of this specific user. After this, the required UI is compiled and delivered.
	6 EXPERIMENTATION SERVICES AND API SPECIFICATION
	6.1 Experiment Deployment Services

	Below we list the experiment deployment related services provided by EEE. These services are services that ensures and target scheduling aspects, subscription and polling. 
	6.1.1 Scheduling APIs

	The /startFISMOExecution starts the schedule as specified in the FISMO object. This API upon successful starting returns {“response”: “Job Scheduled”, “jobID”: <JobID>}. The jobID and the status are stored in a database. The API reads the FISMO object associated with the FISMOID and its QuerySchedule attribute that contains scheduling information. The following scheduler services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/scheduler/<API>
	API
	/startFISMOExecution
	Description 
	This API is used to start execution of the experiment service (FISMO). This API provides a jobID to the FISMO upon the successful scheduling on the Meta Cloud. The API uses timeSchedulePayload to define the startTime, stopTime and periodicity of the job to be executed.
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String timeSchedulePayload
	The timeSchedulePayload is a JSON string that should contain startTime, stopTime and periodicity. A sample of such JSON is {"startTime":"2016-09-15T13:57:00.0Z", "stopTime":"2016-09-15T16:30:00.0Z","periodicity":60}. Here startTime and stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z’) and the periodicity is in seconds. The default value is set to “”. The empty string is interpreted as 0.
	Output
	{“response”: “Job Scheduled”, “jobID”: <JobID>} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	If the status is scheduled then jobID is returned.
	Produces
	application/json 
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist.
	 “InvalidTimeScheduleStructure”: timeSchedulePayload JSON structure is incorrect or does not exist.
	 “UnParsableDate”: either startTime or stopTime is not in the correct format and thus cannot be parsed in the required format.
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute”
	To retrieve the jobIDs for a particular already scheduled FISMO, /getJobIDsfromFISMOID is used.  
	API
	/getJobIDsfromFISMOID
	Description 
	This API is used to get the jobID of a particular already scheduled FISMO. Note that this JobID is the ID given by the Scheduler to the FISMO execution.
	Method
	GET
	Input
	HeaderParam: String fismoID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“jobIDs”: [<JobID1>, <JobID2>..]} is returned as a Response if successful. Here the JobIDs is a list of job IDs associated to the FISMOID. A list is returned because there might be subscribers who might have subscribed to a particular FISMOID. Each subscription to a FISMOID, provides a new jobID to the subscription. This is because we consider each subscription to be different. {“response”: “No Jobs”} is also returned if there is no Jobs found for a particular FISMO. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json 
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To retrieve jobID from a given fismoID, userID and femoID, /getJobIDfromFISMOIDUserIDandFEMOID is used.
	API
	/getJobIDfromFISMOIDUserIDandFEMOID
	Description 
	This API is used to get the jobID associated to a particular fismoID, userID and femoID triple.
	Method
	GET
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: Boolean owner (default value true)
	Output
	{“jobID”: <JobID>} is returned as a Response if successful. {“response”: “No Job ID”} is also returned if there is no JobID was found for the input pair. {“response”: <ERROR>} is returned as a Response if unsuccessful. For the possible list of error please see the Errors row below.
	Produces
	application/json 
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To retrieve the details about a jobID, /getJobIDDetails is used.
	API
	/getJobIDDetails
	Description 
	This API is used to get the details associated to a particular jobID.
	Method
	GET
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“JobID”: <JobID>, “Group”: <GroupID>, “timeSchedule”: {“startTIme”: <startTime>, “stopTime”:<stopTime>, “periodicity”:<periodicity>}, “status”:<status>} is returned as a Response if successful. Here the groupID is the FISMOID and status is a job status from the list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]. {“response”: “No Job information found”} is also returned if there is no Jobs data. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To retrieve the details about all jobIDs, /getAllJobIDDetails is used. This API is similar to the previous one.
	API
	/getAllJobIDDetails
	Description 
	This API is used to get the details of all the jobIDs.
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“JobsScheduled”: [{“jobID”: <JobID1>, “Group”: <GroupID>, “startTIme”: <startTime>, “stopTime”: <stopTime>, “periodicity”: <periodicity>, “status”: <status>}..]} is returned as a Response if successful. Here the groupID is the FISMOID and the status is a job status from the list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]. {“response”: “No Jobs Scheduled”} is also returned if there is no Jobs data. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	Further, to get all the jobIDs for all the scheduled FISMOs use /getJobID
	API
	/getJobIDs
	Description 
	To API is used to get all the existing jobIDs.
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“jobIDs”: [{“jobID”: <JobID1>, “FISMOID”: <FISMOID>}..]} is returned as a Response if successful. Here the JobID is the job ID of the scheduled FISMOID. {“response”: “No Jobs Scheduled”} is also returned if there is no Jobs data. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	The /stopJobExecution stops the job that was already started using the previous defined start APIs. This API takes as an input the JobID and stops the job by deleting it from the scheduler.
	API
	/stopJobExecution
	Description 
	The API is used to pause the execution of a particular job
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Job paused successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	If a job is paused, it can also be resumed. To resume a job /resumeJobExecution is used.
	API
	/resumeJobExecution
	Description 
	To API is used to resume the execution of a particular job
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Job resumed successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	The EEE also provide APIs to reschedule, delete jobs and identify what are the currently executing jobs. This is achieved using /rescheduleJob, /deleteScheduledJob, /deleteAllScheduledJobs and /getCurrentlyExecutingJobs.
	API
	/rescheduleJob
	Description 
	This API is used to change the schedule of an already scheduled Job.
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String timeSchedulePayload
	The timeSchedulePayload is a JSON string that should contain startTime, stopTime and periodicity. A sample of such JSON is {"startTime":"2016-09-15T13:57:00.0Z", "stopTime":"2016-09-15T16:30:00.0Z","periodicity":60}. Here startTime and stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z’) and the periodicity is in seconds.
	Output
	{“response”: “Job rescheduled successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteScheduledJob
	Description 
	This API is used to remove a particular scheduled job from the Scheduler
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Job deleted successfully”} is returned as a Response if successful. {“response”: “No Job found”} could also be returned. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteAllScheduledJob
	Description 
	This API is used to remove all scheduled job from the Scheduler. This API will be protected and will be only available to the FIESTA-IoT administrators.
	Method
	POST
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “All Job deleted successfully”} is returned as a Response if successful. {“response”: “No Jobs found”} could also be returned. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getCurrentlyExecutingJobs
	Description 
	This API is used to get all the jobs that are currently being processed. Note that this is different from listing all jobs that are available in the persistence store of the scheduler.
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Currently Executing Jobs.”, “Jobs”: [<jobs>..]} is returned if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To support ERM and provide single point of delete and update, EEE provides a set of triggers that should be used by the ERM to notify EEE whenever an experimenter deletes, reschedules or update a FISMO. Within this scenario, the APIs are /fISMOUpdateTrigger, /deleteFismoJobTrigger, /deletefismoJobTriggerlist and /deleteScheduledJobsOfFISMO
	API
	/fISMOUpdateTrigger
	Description 
	This API is used to update a particular FISMO if it is already scheduled on the EEE.
	Method
	POST
	Input
	Body: FISMO fismo
	Output
	{“response”: “Job rescheduled successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 The FISMO object is null
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteFismoJobTrigger
	Description 
	This API is used to delete a particular FISMO if it is already scheduled on the EEE.
	Method
	POST
	Input
	HeaderParam: String fismoID
	Output
	{“response”: “Job deleted successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deletefismoJobTriggerlist
	Description 
	This API is used to delete list of FISMOs if it is already scheduled on the EEE.
	Method
	POST
	Input
	Body: String fismoIDs
	In JSONArray format
	Output
	{“response”: “FISMOs deleted successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 No FISMOs Specified.
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteScheduledJobsOfFISMO
	Description 
	This API is used to delete jobs associated to a particular FISMO.
	Method
	POST
	Input
	HeaderParam: String fismoIDs
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “All jobs associated to Fismo are deleted”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.1.2 Subscription APIs

	The subscription services (/subscribeToFISMOReport and /unsubscribeToFISMOReport to the discoverable FISMOs) are used so that an experimenter can subscribe to existing discoverable FISMOs or unsubscribe from already subscribed FISMO. The following subscription based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/subscription/<API>
	API
	/subscribeToFISMOReport
	Description 
	This API is used to subscribe to a particular FISMO’s report
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String userID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String experimentOutput
	Here the experimentOutput is the ExperimentOutput attribute of the FISMO in the JSON ({“url”: <url>}). A sample of currently valid experimentOutput is {"url":"http://myExperiment.com"}. Further, the userID is the ID of the experimenter, and the femoID is the ID of the experiment to which subscription is to be associated to. 
	Output
	{“response”: “subscribed”, “FISMOID”: <FIMSOID>, “JobID”: <JobID>} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json 
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchUserID”: userID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “AlreadySubscribed”: FISMOID is already subscribed and associated to the userID.
	 “InvalidURL”: invalid url 
	 “InvalidExperimentOutputJson”: invalid Experiment Output Json
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API or subscription failed”
	API
	/unsubscribeToFISMOReport
	Description 
	This API is used to unsubscribe from a particular FISMO’s report
	Method
	POST
	Input
	Header Param: String fismoID
	HeaderParam: String iPlanetDirectoryPro
	Header Param: String femoID
	femoID is ID of the experiment to which subscription is to be associated to.
	Output
	{“response”: “Unsubscribed”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchUserID”: userID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “SubscriptionNotFound”: FISMOID is not associated to the userID.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API or un-subscription failed”
	6.1.3 Polling APIs

	A polling service is a service using which an experimenter can run the FISMO once without actually scheduling it. The following polling based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/polling/<API>
	API
	/pollForReport
	Description 
	This API is used to invoke a previously defined FISMO. A call to this API will only produce one Resultset that will be sent to the URL specified in the ExperimentOutput parameter.
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: Boolean owner (default value true). This parameter basically tells the EEE if it has to look into subscriber realm or the owner realm
	Output
	{“response”: “Polled Successfully”: “jobID”: <JOBID>} is returned as a Response if successful. Here JobID is the jobID of the generated for the particular poll. Experimenters are advised to keep this jobID in their record. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json
	Errors
	 Something went wrong
	 FIESTA-IoT Analytics tool was not invoked correctly. Thus polling failed.
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “InvalidURL”: invalid url 
	 “InvalidExperimentOutputJson”: invalid Experiment Output Json
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/dynamicPollForReport
	Description 
	This API is used to invoke a previously defined FISMO. A call to this API will only produce one Resultset that will be sent to the URL specified in the ExperimentOutput parameter. However, this API is different from previous API with respect to the possibility of providing parameter values. This is useful in the case of mobile applications.
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: Boolean owner (default value true)
	QueryParam: String geoLatitude (default value “0”)
	QueryParam: String geoLongitude (default value “0”)
	QueryParam: int intervalNowToPast (default value 0)
	QueryParam: Long fromTime (default value “0L”)
	QueryParam: Long toTime (default value “0L”)
	Body: String Others
	This is a JSON object represented as a string. The default value is “{}”. However, experimenters need to set the key value pair depending on the query. A JSON object the experimenters need to set is 
	{
	"KATInput": {"Method": [""], "Parameters":[""]},
	"otherParameters": {<key>:<value>}
	}
	Here, KATInput essentially reflects the input needed for the FIESTA-IoT Analytics Toolkit, while otherParameters reflect the dynamic attributes
	Output
	{“response”: “Dynamically Polled Successfully”: “jobID”: <JOBID>} is returned as a Response if successful. Here JobID is the jobID of the generated for the particular poll. Experimenters are advised to keep this jobID in their record. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json
	Errors
	 Something went wrong
	 FIESTA-IoT Analytics tool was not invoked correctly. Thus, polling failed.
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “JSONException”: invalid JSON 
	 “QueryException”: invalid query and Parameters
	 “InvalidExperimentOutputJson”: invalid Experiment Output Json
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.2 Experiment Management Services 

	In this section, we list the experiment management APIs that are provided by the EEE and the testbed status Monitoring services. 
	6.2.1 EEE Monitor APIs

	Here we list all the APIs that provide “meta” information about an experiment and the associated services (FISMOs). The following monitoring based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/monitoring/<API>
	API
	/getJobIDStatus
	Description 
	This API is used to get the status of a particular jobID, i.e., one from the list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]
	Method
	GET
	Input
	QueryParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“JobID”: <JobID>, “status”: <STATUS>} is returned as a Response if successful. Here STATUS is one from the list as described above. Other messages that are returned are {“response”: “Job not Scheduled”} {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getAllSubscribersOfFISMOID
	Description 
	This API is used to get a list of subscribers (or the experimenters) that are using a particular FISMO.
	Method
	GET
	Input
	QueryParam: String fismoID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“UserIDs”: [<UserID1>, <UserID2>,..]} is returned as a Response if successful. Here, the “UserIDs” is a list of userIDs that have subscribed to the particular FISMO. It is also possible to get an empty JSON object if there is no user that has subscribed to the given FISMOID. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getAllSubscriptionsOfExperimenter
	Description 
	This API is used to get a list of user subscriptions irrespective of the experiment
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“FISMOIDs”: [<FISMOID1>, < FISMOID2>,..]} is returned as a Response if successful. Here, the “FISMOIDs” is a list of FISMOIDs that the user has subscribed. It is also possible to get an empty JSON object if there are no FISMOIDs that a user has subscribed. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getMySubscriptionsforExperiment
	Description 
	This API is used to get a list of user subscriptions with respect to a particular experiment
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro 
	QueryParam: String femoID
	Output
	{“Subscriptions”: [{“jobID”: <jobID>, “fismoID”: <FISMOID1>},..]} is returned as a Response if successful. Here, the “Subscriptions” is a list of jobIDs and FISMOIDs that the user has subscribed. It is also possible to get an empty JSON object if there are no subscriptions for a particular experiment by the user. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchUserID”: userID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API or Subscription Failed”
	API
	/getJobExecutionLog
	Description 
	This API is used to get the ExecutionLog of a Job. The return is a JSON array with “executionTime” and “dataConsumed” information. Here executionTime is the time it took to successfully execute the Job.
	Method
	GET
	Input
	QueryParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“ExecutionLog”: [{“executionTime”: <time1>, “dataConsumed”: <dataConsumed1>}, {“executionTime”: <time2>, “dataConsumed”: <dataConsumed2>},..]} is returned as a Response if successful. Here, the “ExecutionLog” is a log of successful executions of jobID. It is also possible to get an empty JSON object if there is no ExecutionLog for the jobID. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.2.2 EEE Accounting APIs

	Here we list all the APIs that provide counting of the number of times experiments associated to an experimenter have been executed and the number of times a particular experiment service (FISMOs) has been executed. The following accounting based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/accounting/<API>
	API
	/getUserExecutionCount
	Description 
	This API is used to get the number of times a particular user has executed experiments
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: String fromTime
	QueryParam: String toTime (default “”)
	The fromTime is a string that should be in the format YYYY-MM-DD’T’HH:mm:ss.SSS’Z’. A sample fromTime is “2016-09-15T13:57:00.0Z”. In case toTime is not provided, UTC now will be used.
	Output
	{“count”: <count>} is returned as a Response if successful. Here, the “count” is the number of times a user has executed experiments. Note that the count can also be 0. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “UnParsableDate”: fromTime is not in the correct format and thus cannot be parsed in the required format.
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getJobExecutionCount
	Description 
	This API is used to get the number of times a particular job was executed.
	Method
	GET
	Input
	QueryParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“count”: <count>} is returned as a Response if successful. Here, the “count” is the number of times the job is executed. Note that the count can also be 0. {“response”: <ERROR>} is returned as a Response if unsuccessful. 
	Produces
	application/json 
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs

	Here we list all the APIs that provide experimenters info on the testbed status, monitor a sensor etc.  The following APIs can be invoked using a path https://<HOST>:<PORT>/testbed-monitoring/api/<API>.
	API
	/testbeds
	Description 
	This API is used to get all testbeds that are known by the monitoring tool.
	Method
	GET
	Input
	None
	Output
	Returns the list of testbeds in the format:
	{“<TESTBED_IRI>”: “<TESTBED_NAME>”,..}
	Here <TESTBED_IRI> is the identifier which is used in the Iot-Registry.
	Produces
	application/json
	Errors
	 None
	API
	/testbeds/activated
	Description 
	This API is used to get all testbeds that are activated.
	Method
	GET
	Input
	None
	Output
	Returns the list of all activated testbeds in the same format as in /testbeds.
	Produces
	application/json
	Errors
	 None
	API
	/testbeds/<string:testbed_name>
	Description 
	This API is used to get all known information about specific testbed.
	Method
	GET
	Input
	URLParam: String : The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	Output
	Returns the testbed information in the following format:
	{
	  "activated": <activated>,
	  "location": {
	    "latitude": <latitude>,
	    "longitude": <longitude>
	  },
	  "testbed_name": <TESTBED_NAME>,
	  "sensors": {
	    "active": <active_sensors>,
	    "relative": <relative_sensors>,
	    "total": <total_sensors>
	  },
	  "_id": <INTERNAL_ID>,
	  "testbed_iri": <TESTBED_IRI>
	}
	Produces
	application/json
	Errors
	 {"error_msg": "No testbed found for <TESTBED_IRI>", "error": true}
	API
	/testbeds/<string:testbed_name>/sensors
	Description 
	This API is used to get all known sensors from a specific testbed.
	Method
	GET
	Input
	URLParam: String - The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	QueryParam: String sensor-type – The list can be filter by the type of sensor (e.g.: m3-lite:HumiditySensor)
	QueryParam: String unit – The list can be filter by the measured unit of sensor (e.g.: m3-lite:Percent)
	QueryParam: String quantity-kind – The list can be filter by the measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity)
	Output
	Returns the list of all sensors in the following format:
	[
	  {
	    "sensor_name": <SENSOR_NAME>,
	    "longitude": <longitude>,
	    "latitude": <latitude>,
	    "sensor_type": <sensor_type>,
	    "unit": <unit>,
	    "deployment": <deployment>, # The ID of the testbed this sensor is deployed on
	    "quantity_kind": <quantity_kind>,
	    "newest_value": {
	      "color": <color>,
	      "value": <value>
	    },
	    "newest_date": {
	      "color": <color>,
	      "value": <value>
	    },
	    "_id": <INTERNAL_ID>
	  },
	  {...},
	  ...
	]
	Produces
	application/json
	Errors
	 {"error_msg": "No testbed found for <TESTBED_IRI>", "error": true}
	API
	/sensors
	Description 
	This API is used to get all known sensors from all testbeds.
	Method
	GET
	Input
	QueryParam: String sensor-type – The list can be filter by the type of sensor (e.g.: m3-lite:HumiditySensor)
	QueryParam: String unit – The list can be filter by the measured unit of sensor (e.g.: m3-lite:Percent)
	QueryParam: String quantity-kind – The list can be filter by the measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity)
	Output
	Returns the list of all sensors in the same format as in /testbeds/<string:testbed_name>/sensors
	Produces
	application/json
	Errors
	None
	API
	/sensors/<string:sensor_name>
	Description 
	This API is used to get all information about one specific sensor.
	Method
	GET
	Input
	URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the wanted sensor
	Output
	Returns the sensor information in the following format:
	{
	  "sensor_name": <SENSOR_NAME>,
	  "longitude": <longitude>,
	  "latitude": <latitude>,
	  "sensor_type": <sensor_type>,
	  "unit": <unit>,
	  "deployment": <deployment>, # The INTERNAL_ID of the testbed this sensor is deployed on
	  "quantity_kind": <quantity_kind>,
	  "newest_value": {
	    "color": <color>,
	    "value": <value>
	  },
	  "newest_date": {
	    "color": <color>,
	    "value": <value>
	  },
	  "_id": <INTERNAL_ID>
	}
	Produces
	application/json
	Errors
	 {"error_msg": "No sensor found for <SENSOR_NAME>", "error": true}
	API
	/sensors/<string:sensor_name>/observations
	Description 
	This API is used to get all observations for one specific sensor.
	Method
	GET
	Input
	URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the wanted sensor
	Output
	Returns the list of observations for this sensor in the following format:
	[
	  {
	    "time_value": <ISO_TIME>,
	    "data_value": <VALUE>
	  },
	  {...},
	  ...
	]
	Produces
	application/json
	Errors
	 {"error_msg": "No sensor found for <SENSOR_NAME>", "error": true}
	API
	/testbeds/<string:testbed_iri>/activate
	Description 
	This API is used to activate a testbed in the monitoring tool. All testbeds will be monitored but only activated testbeds will be shown in the GUI.
	Only FIESTA-IoT admins are permitted to activate and deactivate testbeds.
	Method
	GET
	Input
	URLParam: String : The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	Output
	Returns the activated testbed in the same format as in /testbeds/<string:testbed_iri>
	Produces
	application/json
	Errors
	 {"error_msg": "Error while activating testbed <TESTBED_IRI>. Testbed could not be found.", "error": true}
	API
	/testbeds/<string:testbed_iri>/deactivate
	Description 
	This API is used to deactivate a testbed in the monitoring tool.
	Method
	GET
	Input
	URLParam: String: The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	Output
	Returns the deactivated testbed in the same format as in /testbeds/<string:testbed_iri>
	Produces
	application/json
	Errors
	 {"error_msg": "Error while deactivating testbed <TESTBED_IRI>. Testbed could not be found.", "error": true}
	6.3 Experiment ResultSet Storage APIs

	Here we list all the APIs that provide ERS functionalities.  The following APIs can be invoked using a path https://<HOST>:<PORT>/experiment-result-store 
	API
	/experiment-result-store
	Description 
	This interface allows experiment results to be stored in persistence until it is retrieved by the experimenter. Results must be stringified and encapsulated in a JSON object.
	Method
	POST
	Input
	HeaderParam: String userID, Username of the client
	HeaderParam: String femoID
	HeaderParam: String jobID: optional, jobID of the FISMO in the EEE
	Output
	204 OK
	Produces
	application/json
	Errors
	400 Bad Request
	API
	/experiment-result-store
	Description 
	All result sets that cannot be sent to the experimenters are stored in the Experiment Result Storage (ERS). ERS stores result set as is and returns them when service is invoked. Upon a success, the particular result set is deleted from the store.
	Experimenters need to use an ERS API to download the needed data. This API has a signature
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String femoID
	HeaderParam: String jobID: optional, JobID of the FISMO in the EEE
	If both FEMOID and JobID are provided, then the corresponding FISMO results are returned.
	If only the FEMOID is provided, then all FISMO execution results under that particular FEMO along with its corresponding job IDs are returned.
	Output
	On successful response following provided template is returned
	{ "femoResults": [
	   {   "jobid": "<JOBID>",
	       "results": [                 
	  { "time": "<TIMESTAMP>", 
	             "result": "<RESULTSET>"
	           }
	        ]
	     },……
	]}
	{“response”: <ERROR>} is returned as a Response if unsuccessful
	Produces
	application/json
	Errors
	400 Bad Request
	401 Unauthorized
	6.4 Documentation of APIs

	The EEE API documentation was built using Swagger and is available to the Experimenters for testing and understanding. The EEE APIs are divided into 2 categories: one for the experimenters and another for the FIESTA-IoT Admins. For security purposed we just release the link for the APIs that are made public to the experimenters. The public version of the APIs for other components like FAT and ERS is available in Markdown. Please note that for some tools like the monitoring tool, the API documentation is still under implementation phase. It will soon be added to the portal. 
	7 PROTOTYPE 
	7.1 PORTAL

	The FIESTA-IoT project has developed a portal to be used by all the users of the platform as a one-stop shop for all activities. This web-portal has been re-designed in order to improve both the user experience and the look and feel. The current version of the portal is based on bootstrapping CSS and html5 and provides a simple but user-friendly interface. The welcome page of the portal is shown in Figure 33. As it can be seen, the simple interface provides a left vertical menu, leaving the rest of the page free for the actual content. 
	/ 
	Figure 33: Portal welcome page
	7.1.1 Signing in 

	The FIESTA-IoT portal is not accessible publicly and only registered and accredited users have access. In order to login to the portal, the users should access the page: https://platform.fiesta-iot.eu that will redirect automatically to the login page of the OpenAM [10], as shown in Figure 34.
	After using the correct credentials, the users are redirected to https://platform.fiesta-iot.eu/portalui that displays the initial web page of the portal, as shown in Figure 33.
	/
	Figure 34: Portal login page
	7.1.2 Menus

	The portal provides five different menu categories: 
	 Home: this is the initially displayed menu, which includes some generic interest pages that are accessible by all users that are registered to the portal. This category includes the following pages: 
	o Welcome: this displays the initial welcome page with general information about the FIESTA-IoT project.
	o Guide: this page shows some basic information with links to the FIESTA-IoT Moodle pages for the complete guides for experimenters and testbed providers.
	o Contact us: this page includes information for contacting the support team or the project management team. 
	o Statistics: this page includes some sample statistics about the usage of the FIESTA-IoT platform. It includes two tables, with (i) mapping of experiments per testbed and (ii) mapping of testbeds per domain. It also includes two graphs with statistics for the reasoning tool and the number of registered devices per quantity kind. This page is shown in Figure 35.
	 Experimenter: this is the main menu category for experimenters to create, edit and manage their experiments using the developed user interfaces. This menu includes the following web pages: 
	o Experiment editor: this is the tool for creating and editing experiments (see Section 5.3.1 for more details).
	o Experiment Register Client: this is the tool for uploading and registering experiments via a FEDSPEC file.
	o Management console: this is the tool for managing, scheduling and running experiments (see Section 5.3.2 for more details).
	 Testbed provider: this is the main menu category used by testbed providers for registering their testbed, the resources and configuring them. It includes the following pages: 
	o Register testbed: this page displays the tool for the online registration of a new testbed.
	o Register resources: this page displays the tool for the online registration of new devices for the selected testbed in various ways (by text, by upload or manually).
	o TPI configurator: this page includes the tool for configuring the testbed provider interface.
	 Tools: this menu category includes additional tools that can be used by experimenters (and/or testbed providers), with extra functionalities that are useful but are not mandatory. These functionalities are:
	o Testbed monitoring: this page displays the tool for monitoring the status of the testbeds (for more information see Section 5.3.5).
	o Certification [14]: this link redirects the testbed user to the certification portal of the FIESTA-IoT project, where the testbed providers can get validation for the standardised way their testbeds are integrated in the platform.
	o Reasoning: this is another menu category to be used by experimenters for creating, registering and running rules that can be helpful for their experiments (see Section 5.3.3 for more details).
	 Demo: this menu category includes sample experiment demos that show the full functionality of the FIESTA-IoT platform.
	 Help: this menu category provides several helping pages:
	o About FIESTA-IoT: this is a link to the web-page of the project.
	o Support: this is a link to the support page of the website of the project.
	o Documentation: this is a list of web pages providing the documentation of all tools and functionalities developed by the FIESTA-IoT project. 
	o Social Media Resources: this provides links to the youtube channel, and the twitter and slideshare accounts of the FIESTA-IoT project.
	 Create Ticket: this link provides a quick access tool for the users in order to create tickets for asking help by the FIESTA-IoT team or for submitting issues and problems.
	///
	Figure 35: Portal statistics page
	7.1.2.1 Access control / Roles for Menu

	For the FIESTA-IoT portal there are four main access role categories: 
	 Registered users
	 Experimenters
	 Testbed providers
	 Administrators
	The portal has been designed to provide different access to the menus and the web pages according to the role of the user. Access is controlled by the usage of a JSON file, with roles, URLs, targets, CSS icon styles, etc. Based on the current logged on user, the data are filtered in the JSON file to disable/enable menu on the portal. Table 11 shows a mapping of the portal menus to the user roles.
	Table 11: Access roles per portal menu 
	An example for the controlling of the access to the Testbed provider menu is given below, showing that only the administrator and the testbed provider are allowed access:
	7.2 Usage
	7.2.1.1 Testbeds


	The tools for registering a Testbed, registering resources and managing the testbed interface have been provided in the rest of WP3 and WP4 Deliverables (especially [15], [16]) so will not be described again here to avoid repetition.
	7.2.1.2  Experimenters
	7.2.1.2.1 Create an Experiment


	FIESTA-IoT provides a web tool to create and edit experiments called Experiment Editor. There are a couple of ways to create experiment using the Experiment Editor: one is to create a new experiment, another is to duplicate an existing experiment option.
	To create a new experiment using the Experiment Editor we have to click on the add icon on the rectangular block, as shown in Figure 7, which would then redirect us to the new experiment template. This template can be divided in to three blocks: FEMO, FISMOs and Query. Note that the experiment editor follows the defined FIESTA-IoT experiment DSL.
	/
	Figure 36: Experiment Template FEMO
	The FEMO block contains three fields FEMO Name, FEMO Description and Domain of Interest as shown in the Figure 36. For details on the FEMO we refer the readers to [12].
	A FEMO should have at least one FISMO that is created from the initial template. An experimenter can add multiple FISMOs depending on the experiment requirements by clicking the add icon in the FISMO block. Each created FISMOs are listed in align with the FISMO block and every FISMO comes with two immediate options next to its name, Duplicate FISMO operation and Delete FISMO operation. Duplicating a FISMO would create a new FISMO with the same parameters as the existing FISMO, while clicking on the delete icon would remove that particular FISMO form the FEMO. Note that the changes will not take place unless the save button is clicked. 
	/
	Figure 37: Experiment template FISMO
	A FISMO template consists of seven fields, FISMO Name, FISMO Description, Discoverable, Experiment Control, Experiment Output and Widget as shown in Figure 37. For details on the FISMO we refer the readers to [12].
	Every FISMO contains a single Query. The query block contains Quantity Kind, Static Location, Query Interval, and Dynamic Attributes as shown in the Figure 38. For details on the Query Control we refer the readers to [12].
	  /
	Figure 38: Experiment Template Query
	Using the duplicate option in the FEMO block at start of Experiment Editor will result in creating a new experiment with all the FISMO and Queries in the existing experiment. 
	7.2.1.2.2 Register new Experiment

	FIESTA-IoT is currently offering a simple interface in order to store, update and delete experiments called Experiment Register Client. This UI is used in case experiment was using FEDSpec based execution and created the FEDSpec using proprietary tool other than Experiment Editor. The Experiment Register Client can be found at the Experimenter menu of the FIESTA-IoT portal (see Figure 39).
	/
	Figure 39: Portal Experimenter Menu
	The Experiment Register Client provides the ability to store an experiment at the FIESTA-IoT platform in the form of a FEDSpec. The defined FEDSpec could be as simple as a single service (FISMO) or as complex as multiple experiments (FEMOs). To upload a FEDSpec first one should identify the location of it by hitting the “Open FEDSpec” (see Figure 40 below) and then by hitting the “Save FEDSpec” button. As soon as the FEDSpec is saved the included FEMOS appears in the available experiments list (FEMOS) as shown in Figure 40. When uploading a FEDSpec the FEMO/FISMO IDs should be empty, as they will be automatically assigned by the system. 
	/
	Figure 40: Experiment Register Client
	By choosing a FEMO from the list, the User is capable to have a quick overview of it as shown in Figure 41 below.
	/
	Figure 41: Experiment Register Client - Experiment Browser
	The tools provides also the ability to export a FEMO by hitting the “Export FEDSPEC” button after choosing the FEMO of interest from the provided list. The FEDSpec that will be exported will now contain the FEMO/FISMO IDs assigned from the FIESTA-IoT platform. This will give the Experimenter the ability to update the exported FEMO/FISMO by updating the XML file and saving it again to the Experiment Repository following the same process described above.
	7.2.1.2.3 Execute Experiment

	An experiment can be executed in many ways and FIESTA-IoT provides solutions for the execution of experiment for two categories of users (novice, advanced). Further, for the advanced user case FIESTA-IoT provides 2 solutions: one based on APIs of EEE and another one based on directly accessing IoT-Registry APIs. Novice experimenters are advised to use the method described in this section.
	As said experiment execution is handled by a component called “Experiment execution Engine” or EEE. This module uses and supports the experiment description written by an experimenter in the DSL format specified by FIESTA-IoT (for reference on the DSL refer to [12]). Amongst the available features in the DSL, in the current version, EEE supports only a few.  These include starting an experiment service (FISMO), pausing a FISMO, restarting a FISMO, subscribing to already existing and discoverable FISMOs, unsubscribing from subscribed FISMOs, and polling a FISMO (executing one time a FISMO on the FIESTA-IoT platform).  The EEE specific APIs are available for developers or experimenters for testing and more in-depth knowledge about specific APIs. Note that in case an experimenter wants to use the EEE API they should still upload the FEDSpec either using the ERM API [12] or the ERM Client. Nevertheless, experimenters can also use Experiment Management Console and perform actions on the FISMO. This option is to be used by novice experimenters. 
	In order to execute an experiment using Experiment Management Console that is described by its FISMOs, the Experimenter first need to go to:
	https://platform.fiesta-iot.eu/experimentConsole/experimentConsole.jsp 
	You can also use the cookie version of the console by just using the link above. Upon successful authentication, the list of experiments associated with the experimenter or the user is retrieved as shown in Figure 10. Note that this is also available via portal. The experimenter needs to go to the Experimenter Menu and click the “Experiment Management Console”
	From this view, experimenters can then select whichever experiment they want to work on from the list using the “SELECT” button next to each experiment.  Once a particular experiment is selected, this would open another UI (as shown from Figure 42 to Figure 44). The entire UI is divided into 3 panes: Experiment Details, Associated FISMOs, and Subscription Pane) where experiment name, experiment description, a list of experiment Domain of Interest along with Associated FISMOs and available FISMOs for subscription is shown.
	An experimenter can choose to update the metadata of the experiment that he/she has created using “EXPERIMENT EDITOR”. This will open the UI provided in Section 5.3.1 where experimenter can resubmit their updated Experiments. Upon these resubmissions, a service in EEE is triggered that changes only the scheduling interval. If the scheduling interval is not changed nothing is updated on the EEE.
	The “Associated FISMOs” pane shows the “meta” information about the FISMOs that are associated to a particular experiment. The “meta” information includes: if the FISMO was Owned or Subscribed within the frame of an experiment, the status of the FISMO (either NOT YET SCHEDULED, NORMAL, PAUSED, etc.), past execution history and polling option. Once scheduled a “delete job” button will appear that will let experimenters delete any reference of a particular FISMO from EEE. Upon deleting the FISMO will not be executed any more. In order to check for the description of the FISMO, experimenter can click on the name. This will open a snackbar in the bottom of the page and will show the description of the selected FISMO. 
	Initially, all the FISMOs have the NOT YET SCHEDULED status. If the experimenter wants to start the FISMO, they can switch the toggle button. Upon first toggle, the FISMO will be scheduled by the EEE with the NORMAL status. Another toggle would PAUSE the FISMO execution. Yet another toggle would restart the PAUSED FISMO. In order to successfully schedule the FISMO execution, the current version of the EEE supports all that is specified in Section 3.2.
	A sample of <fed:scheduling> is provided below:
	<fed:scheduling>
	  <fed:startTime>2016-11-08T18:13:51.0Z</fed:startTime>
	      <fed:Periodicity>600</fed:Periodicity>
	      <fed:stopTime>2017-11-08T18:13:50.0Z</fed:stopTime>
	</fed:scheduling>
	The <fed:scheduling> would provide the EEE with the start date, end date and the periodicity of the FISMO execution. Thus making these attributes essential in the FISMO description. Once the schedule is set in the EEE, EEE provides a JOB ID that is used for internal purposes. This JOB ID is then provided with the status NORMAL. Upon the schedule, the <query> is read by the EEE from the FISMO description and is sent to FIESTA-IoT Meta-Cloud. The Meta-Cloud executes the query and sends back the results to the EEE. The EEE stores the result internally and pings the location specified in the location specified by the <fed:experimentOutput> (<fed:experimentOutput location=“location”/>).  Upon success, the results are sent to the specified location and deleted from the internal repository. Currently, EEE assumes that the “location” here is a URL, where the specified credentials are granted to the EEE to write the results in a file. For reference and ease, a sample code that experimenters can execute on their server can be found in the following public repository. It is thus noteworthy to state that currently EEE only supports one mechanism right now to send the information to the experimenter. Given the above, it is thus essential to specify <fed:scheduling> <experimentControl> attribute of FISMO, <query> under <prt:query-request> under <fed:queryControl> and <fed:experimentOutput  location=“location”>. If the experimenter wants to just execute the FISMO and not to wait for the EEE to trigger the execution of the FISMO, the experimenter can use POLL NOW. The POLL NOW will execute the <query> defined within the FISMO and would return the results to the same URL that is specified (i.e. the URL where results of scheduled execution are being sent).
	/
	Figure 42: Part 1: Experiment Detail Pane
	/
	Figure 43: Part 2: Associated FISMOs Pane
	/
	Figure 44: Part 3: Subscription Pane
	Nonetheless, apart from the above functionality, an experimenter can also subscribe to an already existing FISMO. In case there are many FISMOs available, an experimenter can choose a particular FISMO from the dropdown list and provide the URL information (see Figure 44). Note that as EEE only support URL, experimenters must specify a valid endpoint. Only after validating the experimenter’s URL the “SUBSCRIBE” button will be unlocked. The experimenter can currently only choose one FISMO at a time. 
	Once successfully subscribed, the list of Associated FISMOs is updated to show the subscriptions. Each new subscription would provide a new JOB ID where the status of the JOB would be NORMAL to the subscribed FISMO and its execution would begin as the schedule specified in the description of that particular subscribed FISMO (see Figure 43). Moreover, the URL specified in the FISMO will not be used. Instead the URL specified by the subscriber would be used to forward the results. An experimenter, on demand, can unsubscribe the subscribed FISMO by clicking “UNSUBSCRIBE”. This will delete the JOB associated from the EEE. 
	An experimenter is also given a capability to see the details of past executions of the “Associated FISMOs”. The details are provided in the form of a graph and contains information like how much time did it take to execute the FISMO and how much data was obtained from the Meta-Cloud. This graph however does not show how much time did it take to execute the FISMO and how much data was obtained from the Meta-Cloud when the FISMO is polled. 
	In order to delete the experiment, it is advised that experimenters first stop/delete the execution of any related FISMO objects on the EEE using the EMC. Once this is done, they are advised to remove the experiment from the Experiment Registry Client. We acknowledge this workflow because this will give experimenters a view of what all services are running and if it is really required to remove them at all.
	8 IMPLEMENTATION
	In this section, we provide details of the installation procedures for the different components we have built.
	8.1.1 Source Code Availability

	In the first version of the document [1], we listed that FIESTA-IoT components are available on private Gitlab. Nevertheless, FIESTA-IoT consortium members privately use Gitlab. A public version of the components is also available for the experimenters or testbeds for their use. The public versions of the components are available via Github. Within Github FIESTA-IoT components that are provided are: ontology, TPI, sample experiment and Experiment Data Receiver.
	8.1.2 Components

	All of the described components are maven projects and are deployable within WILDFLY container. The Experiment Data Receiver however is the only component that currently only executes on Tomcat.
	8.1.2.1 Experiment Editor
	8.1.2.1.1 System Requirements


	Table 12 lists the system requirements that are needed to build and deploy the Experiment Editor. Experiment Editor is built using Node. Once the component is successfully deployed its services can be accessed via http://[HOST]:[PORT]/expeditor where [HOST] is the host and [PORT] the port on which the Node is running.
	Table 12: System Requirements for Experiment Editor 
	8.1.2.1.2 Dependencies

	The Experiment editor requires certain dependencies that form the core of the component. These include those listed in the Table 13. 
	Table 13: Dependencies for Experiment Editor
	8.1.2.1.3 Install and Run

	To install and run the experiment editor, the following steps should be followed in a chronological order. Note that to correctly install the Experiment Editor, no requirements or dependencies should be previously installed, as there might exist configuration issues. 
	Install Node JS
	The documentation and package files required for the installation in any system can be found at https://nodejs.org/en/. To install on an Ubuntu machine, use either: 
	$ curl –sL https://deb.nodesource.com/setup_6.x | sudo –E bash -
	or
	$ sudo apt-get install -y nodejs
	Install Production Process Manager for Node js ‘PM2’
	PM2 is a production process manager for Node.js applications with a built-in load balancer. It allows applications to be kept alive forever, to reload them without downtime and to facilitate common system admin tasks.To install PM2 use:
	$ npm install pm2 -g
	Setup git access key set
	Generation of the RSA key pair is needed to pull the Expeditor from fiesta-ui.git. Copy the result of public key and send it to the administrator to get access to the server and the key can be added to the ssh trust store. Following is an example of where a sample file can be placed/added 
	$ cat ~/.ssh/fiesta.expeditor.git.pub
	Clone and Pull the source from git
	Clone the Experiment Editor source code from git using:
	$ git clone https://thyunkim@bitbucket.org/synctechnoinc/fiesta-ui.git
	Pull the Experiment Editor source code from git using
	$ cd fiesta-ui
	$ git pull
	Installing Required Libraries and Start
	After pulling the code from the git, the required libraries must be installed using:
	$ npm install
	$ bower install
	Start Experiment Editor using
	$ pm2 start npm —name expeditor — start
	Restarting the Experiment Editor
	When code changes, the administrator should first pull from the git and restart pm2 as follows:
	$ git pull
	$ npm install
	$ bower install 
	$ pm2 restart expeditor
	Logs
	The log file of the Experiment Editor can be also accessed using
	$ cd ~/.pm2/logs
	$ pm2 logs expeditor
	8.1.2.2 Portal
	8.1.2.2.1 System Requirements


	Table 14 lists the system requirements that are needed to build and deploy the Portal. Once the portal is successfully deployed it can be accessed via http://[HOST]:[PORT]/portalui where [HOST] is the host and [PORT] the port on which the WILDFLY  is running.
	Table 14: System Requirements for Portal 
	8.1.2.2.2 Dependencies

	The Portal requires certain dependencies that form the core of the component. These include those listed in the Table 15.
	Table 15: Dependencies for Portal
	8.1.2.2.3 Install and Run

	Below are the commands that someone should use to build the portal on the FIESTA-IoT development machine, using maven: 
	$ ./mvnw -DskipTests=true -Pdev clean package
	 For building the portal on a test environment, one should use the command
	$ ./mvnw -DskipTests=true -Ptest clean package
	For building the portal on the production environment, one should use the command
	$ ./mvnw -DskipTests=true -Pprod clean package
	For running the portal on any environment. Targeting to be displayed at the “portalui” address, one should use the command
	$ java -jar target/portalui.war
	The portal should be deployed by uploading the portal war file via WILDFLY using Java 8 and WILDFLY 10.0.0 or a later version. The portal also saves logs on the portalui.log file.
	8.1.2.3 Experiment ResultSet Storage
	8.1.2.3.1 System Requirements


	The following Table 16 lists the system requirements that are needed to build and deploy the component on the WILDFLY container. Once the component is successfully deployed its services can be accessed via http://[HOST]:[PORT]/experiment-result-store where [HOST] is the host and [PORT] the port on which WILDFLY is running.
	Table 16: System Requirements for ERS 
	8.1.2.3.2 Dependencies

	The Experiment Result Store (ERS) requires certain dependencies that form the core of the component. These include those listed in the Table 17. To know the complete list we redirect the readers to the pom.xml of the component that is made available via:
	https://gitlab.fiesta-iot.eu/platform/core/tree/develop/modules/experiment/ers 
	Table 17: Dependencies for ERS
	8.1.2.3.3 Install and Run

	Below we list various steps that need to be performed in order to successfully install the component.
	As the first step one has to setup a schema and table in the MySQL database. The following SQL script can be used to create it:
	CREATE SCHEMA IF NOT EXISTS ers;
	CREATE TABLE IF NOT EXISTS ers.experiments (
	    USER_ID varchar(255),
	    FEMO_ID varchar(255),
	    JOB_ID varchar(255),
	    TIME_STAMP varchar(255),
	    EXPR_RESULT MEDIUMTEXT
	);
	The above script to generate the database in the MySQL can be found under the folder /WEB-INF/sql-scripts/create-expr-store.sql.
	Once the database is setup, code properties need to be set up. There are two Properties files under /WEB-INF/config (a) db.properties: dedicated for database connection setting, and (b) global.properties: for global properties (note, this file is substituted with the common properties file (fiesta-iot.properties) for the core platform. The db.properties file consists of following properties:
	The global.properties file consists of following properties:
	Once the above is done, do the following to generate the WAR file:
	$ cd <PATH TO EXPERIMENTRESULTSTORE>
	$ mvn clean install
	Once all these have been set and the WAR file generated, developers can deploy the WAR file on the WILDFLY container. The MySQL server instance should be running before the deployment is done. Once deployed the ERS services can be accessed at http(s)://<HOST>:<PORT>/experiment-result-store where [HOST] is the host and [PORT] the port on which WILDFY container is running.
	8.1.2.1 Experiment Data Receiver

	A sample code is provided for experimenters to receive data provided by EEE. 
	8.1.2.1.1 System Requirements

	The following Table 18 lists the system requirements that are needed to build and deploy the component on the experimenter’s side. Once the component is successfully deployed its services can be accessed via http://[HOST]:[PORT]/ExperimentServer/store/ where [HOST] is the host and [PORT] the port that Tomcat uses. The component is tested to be successfully executed on Tomcat.
	Table 18: System Requirements for Data Receiver 
	8.1.2.1.2 Dependencies

	The Experiment Data Receiver requires certain dependencies that form the core of the component. These include those listed in the Table 19. (Note we do not list all the dependencies needed. To know the complete list we redirect the readers to the pom.xml of the component that is made available via https://github.com/fiesta-iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml):
	Table 19: Dependencies for Data Receiver
	8.1.2.1.3 Install and Run

	To deploy, on the experimenter side following has to be done before the deployment
	 in the web.xml change the location entry for multipart-config with the desired location
	<multipart-config> 
	<location>#LOCATION#</location>  
	</multipart-config>
	 In the 
	src/eu/fiesta_iot/experimentServer/ExperimentServerService.java change the $(LOCATION) to match the location set in the web.xml
	File file = new File("${LOCATION}", fileName)
	Note that this location is the desired location where you want to store the received files.
	 Make sure that the #LOCATION# has read-write permissions to the Tomcat user and group (under the name and group Tomcat is running).
	 In the Tomcat server change the following line in the conf/content.xml
	<Context>      ...  </Context>
	with the following
	  <Context allowCasualMultipartParsing="true">      
	...
	</Context>
	 restart Tomcat server
	Once the above is done, do the following
	$ cd <PATH TO EXPERIMENTSERVER>
	$ mvn clean install
	$ cp <PATH TO EXPERIMENTSERVER>/target/ExperimentServer.war <PATH TO TOMCAT WEBAPPS>
	Your service is running at http(s)://<HOST>:<PORT>/ExperimentServer/store/ and thus your URLLOCATION should be http(s)://<HOST>:<PORT>/ExperimentServer/store/
	This will enable you to receive the resultsets that are generated after the execution of your FISMO. As also stated before the name of the file received follows a naming convention. Again, it is:
	String filename = JOBID.replace(“-”,””)+URLLOCATION.replace(":", "").replace("/", "_")+”_”+LONG_TIMESTAMP;
	Note here JOBID is a UUID, URLLOCATION is the location that you provide and LONG_TIMESTAMP is a timestamp in long (milliseconds after epoch).
	If the experimenter is using HTTPS, then they should use LetsEncrypt certificate for this API/URL. All other certificates other than those available in default JVM configuration will fail. This is because of the JVM does not have all the certificates installed. However, if the URL is HTTP, it will pass through
	8.1.2.2  Experiment/Testbed Monitoring Tool

	The Monitoring Tool is based on python and uses a Mongo DB to store data in an edited way. This is done to prepare the data for other analysis and also to visualize it in a proper way.
	As the tool is not running in a WILDFLY container, it will be integrated into the portal via an iframe. For this the nginx server, that is serving the portal, is configured to map the monitoring tool into the namespace of the portal. The configuration also makes sure that it is only available via HTTPS. This integrates it also into the security framework, so that users cannot bypass it.
	8.1.2.2.1 System Requirements

	Following Table 20 list requirements for monitoring tool for the correct execution.
	Table 20: System Requirements for Experiment/Testbed Monitoring Tool 
	8.1.2.2.2 Dependencies

	Following Table 21 list python dependencies that are needed for monitoring tool for the correct execution
	Table 21: Dependencies for Experiment/Testbed Monitoring Tool
	8.1.2.2.3 Install and Run

	In the following section, we list all necessary installations and configurations that should be performed.
	 Python and virtualenv creation
	The monitoring tool is based on python and so needs a python environment. This is shipped and preinstalled in all major Linux distributions. As the tool is using several python modules that are installed via pip, a virtualenv is used to isolate the needed modules and to not interfere with the modules that are installed system-wide.
	To create a virtualenv, the package python-virtualenv is needed:
	$ sudo apt install python-virtualenv
	Then the virtualenv can be created:
	$ virtualenv ${HOME}/.virtualenv/testbed-monitoring
	To activate the virtualenv, either it has to be activated or its python binary can be directly used to run a python file.
	$ source ${HOME}/.virtualenv/testbed-monitoring/bin/activate
	The dependencies need to be installed in the virtualenv:
	(testbed-monitoring)$ pip install –r ${TESTBED_MONITORING_HOME}/requirements.txt
	 mongoDB
	The monitoring tool uses a Mongo database in order to store the extracted data in an edited way. The data will be transformed and all not needed parts will be removed.
	To install mongoDB:
	$ sudo apt install mongodb
	 Upstart
	To control the monitoring tool as a service, an upstart script is used. It can be invoked to start and stop the system and also to enable the automatic start of the system.
	The Upstart script that is used:
	description "Testbed Monitoring"
	start on runlevel [2345]
	stop on runlevel [016]
	setuid ubuntu
	setgid ubuntu
	script
	 export HOME=/home/ubuntu
	 cd ${HOME}/fiesta-tools/testbed-monitoring
	 exec ${HOME}/.virtualenv/testbed-monitoring/bin/python run.py
	end script
	The testbed monitoring is installed under /home/Ubuntu/fiesta-tools/testbed-monitoring. The run.py file, which is the start file will be invoked directly with the python binary from the virtualenv.
	 Nginx configuration
	As mentioned before, to enable the monitoring tool to be accessible in the portal, some changes in the nginx configuration are necessary. The monitoring tool is configured to listen to port 4000 for HTTP connections. The basic namespace is /dashboard. So, the nginx configuration needs to map in its HTTPS configuration the /dashboard namespace to the Monitoring tool by using proxying.
	The relevant entry inside of the /etc/nginx/sites-enabled/default file:
	location /dashboard {
	proxy_set_header   X-Real-IP $remote_addr;
	proxy_set_header   Host      $http_host;
	proxy_pass         http://127.0.0.1:4000;
	proxy_read_timeout 90;
	}
	It will simply pass all URIs starting with dashboard directly to the Monitoring Tool.
	 Monitoring Tool configuration
	The Testbed Monitoring Tools config file, which can be found under {TESTBED_MONITORING_HOME}/config.yml, is a yaml file, which can be configured in an easy way:
	monitoring:
	  iot_registry: http://localhost:8080/iot-registry/api
	  testbeds_update_time: 120  # minutes
	  sensors_update_time: 120  # minutes
	  observations_update_time: 10  # minutes
	  observation_time_span: 7  # days
	  max_query_span: 1  # days
	web:
	  host: 0.0.0.0
	  port: 4000
	  overall_duration: 1
	db:
	  host: localhost
	  port: 27017
	  db_name: monitoring
	  drop: False
	In the monitoring section the tool itself can be configured, web is for adapting the web server and db is used to configure the access to the mongoDB.
	The monitoring section has the URI to the internal port of the IoT-Registry. The fields *_update_time are to configure the interval of the internal tasks to query the IoT-Registry. The field observation_time_span is to limit the maximum days the Testbed Monitoring Tool will store observations for each sensor. The field max_query_span is used to limit the maximum query range of the IoT-Registry to not ask for too much data.
	9 CONCLUSION
	This is the last deliverable with respect to the tasks within WP4. This deliverable reports advancements done within Task 4.4 and Task 4.5 and updates that were performed to [1]. Via this deliverable, we provide our advancements with respect to how experimenters could create, deploy and manage experiments, giving as well an overview about the FIESTA-IoT portal with respect to experimenters. Note that the portal is not only limited to the tools that are applicable to experimenters but it also supports tools available for testbed owners (some of which are presented in [15]). Further, other user roles defined within FIESTA-IoT framework would also use the FIESTA-IoT portal. 
	This deliverable mainly reports issues identified by the reviewers and provides new tools that were developed. Nonetheless, the EEE, EMC and Portal were updated to support new functionalities, APIs and tools to help experimenters achieve their goals. The updates mainly relate to inclusion of new accounting API within EEE, more restricted APIs now being public, and revamped UI for EMC and Portal.  Other than the updates to the afore-mentioned tools, within this deliverable, new tools such as: Experiment editor using which experimenters can create configuration/DSL for EEE, Experiment/Testbed monitoring tool using which experimenters can monitor the status of the testbed etc., Experiment Data receiver using which experimenters can receive the resultset, Experiment Result store using which experimenters can download previously available resultset are also reported.
	It is worth mentioning that the provided/discussed tools will be updated on need basis after analyzing the requirements, if any, from the Open Call/other participants. Of course, continuous support, integration and bug fixing will be inevitably part of it. As the tools are also available to public, these tools are well documented and the APIs within are supported by the documentation where the experimenters can possibly execute the APIs if they have the right credentials. 
	REFERENCES
	[1] FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing IoT Experiments,” 2017.
	[2] FIESTA-IoT, “Deliverable 2.1: Stakeholders Requirements.”
	[3] FIESTA-IoT, “Deliverable 2.3: Specification of Experiments, Tools and KPIs.”
	[4] FIESTA-IoT, “Deliverable 5.1: Experiments Design and Specification.”
	[5] FIESTA-IoT, “Deliverable 5.2: Experiments Implementation, Integration and Evaluation,” 2017.
	[6] FIESTA-IoT, “Deliverable 3.6: Concept and Development for IoT Data Analytics and IoT Stream and Service Management,” 2017.
	[7] FIESTA-IoT, “Deliverable 4.6: Tools and Techniques for Managing Interoperable Data sets,” 2017.
	[8] FIESTA-IoT, “Deliverable 4.1: EaaS Model Specification and Implementation,” 2016.
	[9] FIESTA-IoT, “Deliverable 2.4: FIESTA-IoT Meta Cloud Architecture,” 2015.
	[10] FIESTA-IoT, “Deliverable 4.4: Authentication, Authorization, Data Protection and Reservation of Resources V2,” 2017.
	[11] A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage Dictionary of the English Language. Boston: Houghton Mifflin, 1992.
	[12] FIESTA-IoT, “Deliverable 4.2: EaaS Model Specification and Implementation,” 2017.
	[13] FIESTA-IoT, “Deliverable 3.1: Semantic models for testbeds, interoperability and mobility support and best practices,” 2016.
	[14] FIESTA-IoT, “Deliverable 6.2: Certification suite V1,” 2017.
	[15] FIESTA-IoT, “Deliverable 3.3: Specification and implementation of common Testbed interfaces,” 2016.
	[16] FIESTA-IoT, “Deliverable 3.4: Specification and implementation of common Testbed interfaces,” 2017.
	Word Bookmarks
	OLE_LINK74
	OLE_LINK75


