FIESTA-loT

www.fiesta-iot.eu

el)

HORIZON 2020

ot

European The EU Framework Programme for Research and Innovation

Commission

HORIZONS 2020 PROGRAMME
Research and Innovation Action — FIRE Initiative

Call Identifier: H2020-1CT-2014-1
Project Number: 643943
Project Acronym: FIESTA-loT

Federated Interoperable Semantic loT/cloud

Project Title: Testbeds and Applications

Infrastructure for Submitting and Managing
loT Experiments — V2

Document Id: FIESTA-l0T-D4.8-20171130-Draft

File Name: FIESTA-l0T-D4.8-20171130-Draft.pdf

Document reference: Deliverable 4.8

Version: Draft

Editor: Rachit Agarwal/Nikolaos Georgantas/Valerie Issarny
Organisation: Inria

Date: 30/11/2017

Document type: R, DEM

Dissemination level: PU

Copyright © 2017 National University of Ireland - NUIG / Coordinator (Ireland), University of
Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en
Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom), Unparallel
Innovation, Lda - Unparallel (Portugal), Easy Global Market - EGM (France), NEC Europe Ltd. NEC
(United Kingdom), University of Cantabria UNICAN (Spain), Fraunhofer-FOKUS (Germany), Research
and Education Laboratory in Information Technologies - Athens Information Technology - AIT (Greece),
Sociedad para el desarrollo de Cantabria — SODERCAN (Spain), Ayuntamiento de Santander — SDR
(Spain), Korea Electronics Technology Institute KETI, (Korea). The European Commission within
HORIZON 2020 Program funds the FIESTA-IoT project.

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FIESTA-loT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any
third party, in whole or in parts, except with prior written consent of the consortium.

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) | Date Comments
V01 |Rachit Agarwal Inria 2017/04/18 | Initial version of the Document
2017/09/04 | Updated TOC
2017/09/20 | Section: Relation with the Functional
Architecture, Starting Service with
EEE, Experiment Deployment
Services, Execute Experiment
Section: EEE and Receiver
2017/09/20 | Requirements, EEE Monitor APIs
Specification, EEE Accounting APIs
Specification, Experiment Data
Receiver specification
Section: Experiment Management
2017/10/24 | Console
Introduction
Elias Tragos NUIG 2017/10/26 | NUIG Contributions V1
Ronald Steinke FOKUS 2017/10/27 | FOKUS contributions V1
2017/10/30 | FOKUS contributions V1 updates
Tarek Elsaleh UNIS 2017/10/27 | UNIS contributions V1
Ramnath Teja Chekka [KETI 2017/10/31 | KETI contributions V1
V02 |Rachit Agarwal Inria 2017/11/01 | V2 Generated
Ramnath Teja Chekka [KETI 2017/11/03 | KETI contributions V2
Ronald Steinke FOKUS 2017/11/07 | FOKUS contributions V2 Updates
Tarek Elsaleh UNIS 2017/11/07 |UNIS contribution V2 Updates
V03 |Rachit Agarwal Inria 2017/11/08 | V3 Generated
Ronald Steinke FOKUS 2017/11/14 | KETI contributions V3
Ramnath Teja Chekka |KETI 2017/11/14 | FOKUS contributions V3
V04 |Rachit Agarwal Inria 2017/11/14 | V4 Generated, Conclusion
Tarek Elsaleh UNIS 2017/11/15 |UNIS Contribution V4
Elias Tragos NUIG 2017/11/15 |NUIG contributions V4
V05 |Rachit Agarwal Inria 2017/11/15 | Final version ready for review
Flavio Cirillo NEC 2017/11/21 | TR Review
David Gomez uc 2017/11/21 | TR Review
Paul Grace ITInnov 2017/11/22 | QR Review
V06 |Rachit Agarwal, Inria 2017/11/25 | Addressed comments
Elias Tragos, Tarek
Elsaleh
Ronald Steinke
Ramnath Teja chekka
Rachit Agarwal Inria 2017/11/28 | Deliverable ready for submission
Draft |Elias Tragos NUIG 2017/11/30 | Draft for submission

Copyright © 2017 FIESTA-IoT Consortium

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Overview of Updates/Enhancements over D4.7

2 Added new components and divided the section into two sections (section 2 and
section 3)

Added FIESTA-loT Technical Architecture
Modified API descriptions, Added new APls
Added other tools section that describe specifications of the new components

Updated Portal description

0 N o o0 b

Updated Implementation details

Copyright © 2017 FIESTA-IoT Consortium 2

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

TABLE OF CONTENTS

1 Executive Summary/INtroduction ... 7
2 Relation with the Functional Architecture ... 9
K 2 =T0 1L 1= 11 L) 4L 10
31 Experiment Modelling ... sssssssssssssssssssssassssssssssss 10
3.2 EEE QNd ReCeIVET ciiniiiiiimiiesimsississisnssssssse s ssssssssssssssssssssansssssmssnsssssassss senssnssmssmssassanssnsanssnnsmnans 11
3.3 Experiment Execution Result-set Data StOre ... 13
3.4 Experiment/Testbed Monitoring TOOl........cnnmmsmmsssssssssssssssssssssssssssssssens 13
3.5) 7 1 15
4 Flesta-IoT Technical ArchiteCture ... e ssessssess 16
4.1 Sequence Diagram ... 19
4.1.1 Starting Service With EEE ... cereseesesecsesssessessssesss s sssssssssssssssssssssssssees 19
4.1.2 Sequence Diagram Experiment/Testbed Monitoring Toolccomneneenneneensesseennes 20
LSS 14 173 ol 0 o) N 22
51 Experiment Result Store (ERS)coummssssssssssssssssssssssssssssssssssssssess 22
5.2 Experiment Data ReCEIVETc.cummmmmmmismsmmssssmssisssnsssassssssasss 22
5.3 L0 00X 23
5.3.1 EXPeriMeNnt EAIitOr . ettt sessse st s st s sssaneanes 23
5.3.2 Experiment Management Console (EMC)...eneneenmmesseseessessesssssssssssessessssssesseees 24
5.3.3 Reasoning tool (inference TOOD) ... sssssssssssssssans 26
5.3.4 FIESTA-I0T AcquiSition TOOIKIt....coeriereeriereiseineceseeseesseisessesse e sssssssssss s sssssssssssssssans 45
5.3.5 Experiment/Testbed Monitoring TOO] ... essessessesseens 47
6 Experimentation Services and API Specification........c.coummmsmsmssmsmsmsmssssssnssssssssssenans 53
6.1 Experiment Deployment SeIviCes......ummmsssssssssssssssssssssssssssssssssssnss 53
6.1.1 SCREAUIING APIS ..ottt see e ss b sea s s s bbb bbb bbb as 53
6.1.2 SUDSCIIPLION APIS..uiiercrescrereeresesessi s s st snsseas 63
6.1.3 POIING APIS ..ttt es sttt s bbbt 65
6.2 Experiment Management SEIVICESummmmmmsmmsssssssssssssssssssssssssssssssssssssnsas 67
6.2.1 EEE MONITOT APIS sttt sssss e e s s sssss s s s s ssssssssssssssesssssssssssssssnsasssssssses 67
6.2.2 EEE Accounting APIS ... sssssssssssssssens 70
6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIS.... e 71
6.3 Experiment ResultSet Storage APIS.......cccmnmnnnmmmsssssssssssssasaes 76
6.4 Documentation of APIscccvvrerrrerscssnnsans 78
172N 0 401 0] 5, 1 79
7.1 0] 2 - N 79
8 T N 1= 410 0= | o T 79
0 N) ¢ (PP 80
7.2 L ¥, 84
8 IMPlementation.... s —————————————————————— 93
8.1.1 Source Code AVAIlability ..o sesses s ssss s s ssssnes 93
8.1.2 COIMPONENLES c.eurereurerereeesessessssessessesesssssssessssessessssess s esssssssessssssssss s s s ssesssssssess s ssssssssasssssssassesssesssnas 93
12 I 0703 4 Lo 1) 15) o 1 104
2= =) o= 1 L S 105
Copyright © 2017 FIESTA-IoT Consortium 3

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

LIST OF FIGURES

FIGURE 1: FIESTA-IOT FUNCTIONAL ARCHITECTURE COMPONENTS ADDRESSED IN THIS DELIVERABLE ARE

Y = N = =1 9
FIGURE 2: FIESTA-IOT TECHNICAL ARCHITECTURE (FULL VIEW) ..cciiiiiiiiiiieee et 17
FIGURE 3: FIESTA-IOT TECHNICAL ARCHITECTURE (EXPERIMENTER VIEW) ...cciivviieeiiiieeesieeeeeseeeeeeseeaeens 18
FIGURE 4: SEQUENCE DIAGRAM FOR STARTING AN EXPERIMENT ... e 20
FIGURE 5: BOOTSTRAPPING OF THE TESTBED MONITORING.....uuuuuueeeeeee e e e e e s e s e se e e an e anaans 20
FIGURE 6: USER INTERACTION WITH THE TESTBED MONITORINGccciiiittiiiiieeeeeeiciieeeeeeeeeeesinveeeeeeeeeeeannes 21
FIGURE 7: EXPERIMENTER INTERACTIONS WITH ERS....coiiiiiiieeee ettt 22
FIGURE 8: EXPERIMENT EDITOR INITIAL UL ...eeneiiiii e e e 23
FIGURE 9: FEMO XML PREVIEWuuuuuuuiuiieieieieeeeee e e s e e s s s e s e s s s s s s s aesnsnsnsnsasnansnsnsnanns 24

FIGURE 10:
FIGURE 11:
FIGURE 12:
FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 20:
FIGURE 21:
FIGURE 22:
FIGURE 23:
FIGURE 24:
FIGURE 25:
FIGURE 26:
FIGURE 27:
FIGURE 28:
FIGURE 29:
FIGURE 30:
FIGURE 31:
FIGURE 32:
FIGURE 33:
FIGURE 34:
FIGURE 35:
FIGURE 36:
FIGURE 37:
FIGURE 38:
FIGURE 39:
FIGURE 40:
FIGURE 41:
FIGURE 42:
FIGURE 43:
FIGURE 44:

EXPERIMENT MANAGEMENT CONSOLEiiiiiiieeiteeeeeee ettt s e e e e e e et e e e s e s eeeaaaaeseeeseeeanaaanees 25
CREATE RULE SCREEN ... ettt e e e e e e et eeee e e e e e eaaaees 26
CREATE NEW RULE WHEN SEMANTIC EXPERT ...t eeeeeeeee et e e e e e ee e e e e e e e emeeeaaaeeaaeees 27
CREATE NEW RULE WHEN SEMANTIC EXPERT —TEXT VIEW INPUTeneeeeeeeeeee e 28
CREATE NEW RULE = NON-SEMANTIC EXPERTttt 30
EXAMPLE OF RULE DETAILS ... oottt 32
EDIT RULE INFORMATION ... e et 33
T gl ST H = 0T N 1 =3 1 34
RULE REGISTRATION HOME ... e s e e e e e aeaeseaeaeaaaeaeaeaaaas 35
REGISTER RULE= AVAILABLE RULES ...t e e e e e e e e e e e e e e e e e e aeaeaeaeaaaas 36
REGISTER RULE - DETAIL RULE CONTENT ..t e s e e e ans 37
REGISTER RULE = SELECT SENSOR ...ouuuuuiiiiiiiitetiiieeeeeseeetatieseseaeeesattnnessaessestannsesesseesnsnenes 38
REGISTER RULE — DETAILED INFORMATIONoivittieiiieeieeetiiieeeeeeeeeeetaeeeesesseeaanneseesseeesnsannnnnes 39
USER INTERFACE FOR EDITING A RULE REGISTRATIONoeruunee e e e 40
RULE EXECUTION HOME PAGEottt e e 41
USER INTERFACE FOR CREATING A NEW RULE EXECUTIONuuneeeeeeeeeeee e 42
EXECUTE RULE ON SENSOR BASE ON SPECIFIC TIMEo ee et 43
RE-EXECUTE RULE ... et 45
ANALYTICS TOOLKIT TABS ... eeteeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeaeeeeeaesssssssesasssssssasesssssssnsnsssnsnsnsnsnsnsnnnsnnnnnnns 46
ANALYTICS INPUT TAB. ..ottt ss e s sesssesees s e s seeesmsssnessnsesmsmsnemnnsnnnnnnns 46
ANALYTICS TOOLKIT RESULT ..ttt se e sesssnessesesnenenemnmennnnnnn 47
THE TESTBED MONITORING TOOL EMBEDDED IN THE FIESTA-IOT PORTAL ..cccoeveveveieieeeeeeeee 48
TESTBED MONITORING COMPONENT IN THE FIESTA-IOT PLATFORM......coooeviiiiiiiiiiiieieeeee 49
PORTAL WELCOME PAGEcvtuuiiieeeieetettee e e e e e ettt e e e e e e e e eetaa s e e e s e e e sat e eeaessestaaaaseeeeeeeansaannes 79
PORTAL LOGIN PAGE ... oo ettt e e e e e e 80
PORTAL STATISTICS PAGE ..ottt et e e et e e e e e e e e e e e ae s 82
EXPERIMENT TEMPLATE FEMOot 85
EXPERIMENT TEMPLATE FISMO ... e e 85
EXPERIMENT TEMPLATE QUERY ... ettt 86

PORTAL EXPERIMENTER IMENU......uuuiuii s e e e e e e e e e ae s 87
EXPERIMENT REGISTER CLIENT ...ciieietiiitttteeieeeeeeeeeteeeeeeeeeseesaeeseeeeesssesssaseeeeeeeessnnteseeeeeesaaanses 88
EXPERIMENT REGISTER CLIENT - EXPERIMENT BROWSERcvvviiiieeiiiiiiiiieeeeeeeeeseiveeeeeeeeeeesnns 88
PART 1: EXPERIMENT DETAIL PANE ... eiiitiiie ettt e et e e e e e e e senveaeeeeeeeeennnes 91
PART 2: ASSOCIATED FISIMOS PANEuuuiieeeeceececee e e 91
PART 3: SUBSCRIPTION PANE.......uuuitiieieieieee e e e s e e s e e e s s s s e s s s s s s s e s sesnannns 91

Copyright © 2017 FIESTA-IoT Consortium 4

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

LIST OF TABLES
TABLE 1: REQUIREMENTS ADDRESSED BY EXPERIMENT MODELLING TOOL (EXPERIMENT EDITOR) 10
TABLE 2: REQUIREMENTS ADDRESSED BY EEE AND RECEIVERvvveeeeeeeeeeeeeeeeeeeeemnenesnnnnnnnnes 11
TABLE 3: REQUIREMENTS ADDRESSED BY ERS ..ottt eseeeennnnsnnnsmnnnnnnnnnnnnnes 13
TABLE 4: REQUIREMENTS ADDRESSED BY EXPERIMENT/TESTBED MONITORING TOOLvvvveeeeeeene 13
TABLE 5:REQUIREMENTS ADDRESSED BY PORTAL ...ttt eeeenesnsmemsmnmnmemnmnnnnne 15
TABLE 6: QUERY FOR CREATING A RULE ... smsmsmsmnmsmnmnmnmnmnnnnnn 28
TABLE 7: SPARQL QUERY OR A RULEuuiiiiiieteee oot e e e e e e e et e e e e e e e e e e et e e e e s e e eansaaass 31
TABLE 8: SPARQL QUUERY ..ottt et ettt e e e e ettt e e e e e e e et et e e e e e e e e eaa e eeaesees b e eeeseeeessannsanss 44
TABLE 9: SPARQL QUERY ...cvvttiiiiiieieeete e ettt e e e e ettt e e e e e e e e e et e e e e e e e e ea b e eeaeseeetaaa e eeeseeeassannannes 50
TABLE 10: SPARQIL QUERY ..ettiiiiieiiiette ettt e e ettt e e e e e e e e e et e e e e e e e e eata e eeaeeeeebaaa e eeeseeeaesaananes 51
TABLE 11: ACCESS ROLES PER PORTAL MENUccevutuuniieiiiieetieeeeeeseeesatisseeeseesessannesssssesssannnsesesseesssnnnsees 83
TABLE 12: SYSTEM REQUIREMENTS FOR EXPERIMENT EDITOR ...vvveveteeeeeeeteeeeeeeeeeeeeeeeeesesennsesnsnnnnnsnnnnnnnnes 93
TABLE 13: DEPENDENCIES FOR EXPERIMENT EDITOReveeeeeeeeeeeeeseeeeeeeeeeeeeeeessesneesesesssennnnsnnnsnnnnnsnnnnnnnnes 94
TABLE 14: SYSTEM REQUIREMENTS FOR P ORTAL ...ttt eeeeeeesaeesenesssennnnennmsnnnnnnnnnnnnnnes 95
TABLE 15: DEPENDENCIES FOR PORTAL ...ttt smsnsmsmnmnnsmnmsmnnnmnmnmnnnnnn 95
TABLE 16: SYSTEM REQUIREMENTS FOR ERSo emnmememnmnmnnnes 96
TABLE 17: DEPENDENCIES FOR ERS ... senmm e smnnnmnmnmnnnnnn 97
TABLE 18: SYSTEM REQUIREMENTS FOR DATA RECEIVEReveveteeeteeeeeeeeee e seeeeeaessaseesssnsesnsnsnnnnnnes 98
TABLE 19: DEPENDENCIES FOR DATA RECEIVERteeeteteeeeeeeeeeee e sesessssseansssnsnsnsnsnnnnnnnnes 99
TABLE 20: SYSTEM REQUIREMENTS FOR EXPERIMENT/TESTBED MONITORING TOOLcvvveveveieieeeeeeveieeans 101
TABLE 21: DEPENDENCIES FOR EXPERIMENT/TESTBED MONITORING TOOLccoivvviiieeeeeiieeiieee e 101

Copyright © 2017 FIESTA-IoT Consortium 5

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

TERMS AND ACRONYMS
Meaning

API Application Programming Interface

DOI Domain of Interest

DSL Domain Specific Language

EEE Experiment Execution Engine
EMC Experiment Management Console
ERM Experiment Registry Management Component
ERS Experiment Result Store

FAT FIESTA-loT Analytics Toolkit

FC Functional Component

FEDSpec FIESTA-lIoT Experiment Description Specification

FEMO FIESTA-loT Experiment Model Object
FISMO FIESTA-loT Service Model Object
HTML Hyper Text Markup Language
HTTP HyperText Transfer Protocol
10T Internet of Things
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
oC Open Call
Ul User Interface
URL Universal Resource Locator
WP Work Package

Copyright © 2017 FIESTA-IoT Consortium

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

1 EXECUTIVE SUMMARY/INTRODUCTION

This deliverable is a second iteration [1]. It is noteworthy to assert that the current
deliverable should not be considered as a standalone version but instead read along
with deliverable [1]. This document provides an update to the reported tools and also
provides technical details on newly developed tools that support experimentation
over the FIESTA-lIoT Meta Cloud (data store). Some key updates performed in the
already reported tools, such as Experiment Execution Engine (EEE), Experiment
Management Console (EMC) and Portal include:

e Updates to the API (Application Programming Interface) of Experiment

Execution Engine,
e Updates to the User Interface (Ul) of EMC to support:
o Experimenters to get/know the required IDs for the getting data from
Experiment Result Store (ERS)
o Delete the scheduled FISMO (FIESTA-IoT Service Model Object) from
EEE. Note that throughout this deliverable we will use FISMO and
FEMO (FIESTA-IoT Experiment Model Object) but they should be
considered as a Service (FISMO) within an Experiment (FEMO).
e Updates to the Portal include:
o A newly designed interface to address issues raised previously, such
as an enhanced menu that is based on the type of user (Experimenter,
Testbed Admins and FIESTA-IoT Admins) and streamlined layout
o Availability of new tools for different types of users of FIESTA-loT, and
o Support for the mobile version of portal.

Besides the above modifications and updates, we also report technical details on the
newly developed and functional modules, such as Experiment editor, ERS and
Experiment/Testbed Monitoring tool. Note that some technologies that we described
in [1] towards building tools, such as Experiment Editor, are now not used to build the
tool due to some limitations with regards to the handling of multiple users.

Within this deliverable, as reported in [1], we start by analysing the requirements
collected in [2] for the developed tools, either new or existing, those coming from in-
house experimenters [3], [4], Open Call (OC) participants and the validation done by
in-house experimenters [5].

As this is the last technical deliverable in terms of tools provided under Work Packages
3 and 4 (WP3 and WP4), it is also essential that we report how the FIESTA-IoT platform
technical architecture looks like and provide a brief overview of the interactions among
those tools that facilitate experimentation over the FIESTA-IoT infrastructure. Note
that, within this deliverable, we only focus on the part of FIESTA-IoT platform technical
architecture that focuses on experimenters. Following the architecture, we provide
updated sequence diagrams for “starting the execution” of the experiment using EEE.
The update mainly reflects the integration of FIESTA-IoT Analytics Toolkit (FAT) and
the possibility of scheduling the experiment on loT-Registry or FAT.

For the monitoring tool, a technical description of it was provided in [6]. In this
deliverable, however, we present the user side of the tool and focus on the Ul
Additionally, we describe the new tools (those that were not reported before) such as
ERS, Experiment Data receiver and Ul interface for tools such as Experiment editor,

Copyright © 2017 FIESTA-IoT Consortium 7

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

EMC and Reasoning tool to name a few. After this description, we then list the APIs
that play an essential role in fulfilling the experimenters’ needs. These APIs mainly
include the scheduling, subscription, polling, monitoring, accounting and data
download APIs provided by various tools such as EEE, monitoring and ERS tools.

To meet the users’ expectations, performance analysis of the tools is an essential part
once the tools are developed. As all the tools that support development, deployment
and management of the experiment are either Ul tools or delegate the requests to loT-
Registry, analysis of loT-Registry with respect to the experimenters’ need is essential.
Since this assessment has been already carried out and been reported in [7], we do
not report it here.

A simple mock-up walk-through of the FIESTA-IoT portal (that is now supported in
various browsers either on Desktop or on Mobile) follows, with the aim to clearly explain
to experimenters the workflow and steps to be performed in order to execute an
experiment. Note that the steps reported in this deliverable only focus on one
interaction path within the technical framework. However, we do not report workflow
for experimenters that directly access loT-Registry, rather we report the workflow that
an experimenter need to follow when interacting with FIESTA-IoT tools such as
Experiment Editor, EMC, EEE that facilitate the execution of the experiment.

A clear installation steps for the tools and how to use the above-mentioned
components follow the section. The conclusion concludes the deliverable.

We also refer the audience to [8] and [1] in order to know more about WP4, its scope,
related tasks and targeted audience.

Copyright © 2017 FIESTA-IoT Consortium 8

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

2 RELATION WITH THE FUNCTIONAL ARCHITECTURE

The functional architecture of the FIESTA-IoT platform is described in [9]. An updated
version of the same is available as in Figure 1. In relation to the platform, in this
deliverable we are mainly focused on describing functionalities (other than those
mentioned in [1]) that are now supported by both the FIESTA-loT functional
architecture and the FIESTA-IoT technical architecture. To provide a comprehensive
view about the tools that are supported by the functional architecture and are reported
in this deliverable, we refer readers to Figure 1. These tools are: EEE, Experiment
Editor, Experiment Registry Module (ERM), EMC, ERS, and Experiment/Testbed
Monitoring (performance monitoring). It should be noted that we have moved some of
the tools already reported within WEB Browsing and Configuration Functional
Component (FC) outside the FC. We mainly describe interactions between the
components that enable experimentation over the FIESTA-IoT platform as part of the
technical architecture (Section 4). As for the above-mentioned components, we
present them in the next sections along with more requirements.

Standalone Experiments

MANAGEMENT FG ERVICE ORGANISATION F! IOT PROCESS MNGT FG IRTUAL ENTITY FG IOT SERVICE FG SECURITY FG

i i
Experiment Editor + VE Service loT Service
ERM endpoint endpoint
WEB Browsm%&
C

Configuration i
AuthZ
Experiment Execution FIESTA Built-in

A
(e PCOCI?CSYS
EMC Admin

Inference
Reposito Engine

FIESTA Analytics (KAT)

APPLICATION FG

User
Management

J

E FG (Meta-Cloud VE Data Endpoint Virtual EntityRegistry

Data
Manager

Data Broker

Testbed Web lOT SERVICE FG Meta-Cloud Data Endpoint
Configuration

VE web fle
<D (£

VE Broker

Service/Resource
b fle

Data
Manager
Resource Manager
W (Sepnanti \w/
/Alidain

COMMUNICATION FG

Message Bus
(annotated Data) or
"Topic" related

Performance
monitoring

DEVICE FG

Figure 1: FIESTA-IoT Functional Architecture Components addressed in this
deliverable are marked in green

Copyright © 2017 FIESTA-IoT Consortium 9

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

3 REQUIREMENTS

In this section we provide how the requirements those proposed in [2] are fulfilled by
the developed tools.

3.1 Experiment Modelling

Table 1 lists requirements addressed by Experiment Editor.

Table 1: Requirements addressed by Experiment Modelling tool (Experiment

Editor)

24_NFR_ACC_Tools_planning_a FIESTA-IoT could provide tools to enable the

uto_tasks planning of automated tasks

32_NFR_ACC_Provide_dev_depl FIESTA-IoT should provide development,

oy_manag_config tools deployment, management, and configuration
tools

35_NFR_PLA_Manage_resources FIESTA-IoT should visualize and manage the

_in_query_or_experiment resources entailed in a specific query or
experiment

For Experiment Modelling the Experiment Editor addresses the above three
requirements. We next provide details so as to how these requirements were met.

The experiment editor provides the experimenters a Ul tool to build experiments
(FEMO), services (FISMO) and Queries that would allow them to easily build
task thereby fulfilling the requirements
24 _NFR_ACC_Tools_planning_auto_tasks and
32 NFR_ACC_Provide_dev_deploy _manag_config tools. The tool itself is
explained later in the Section 5.3.1 while the workflow is provided in Section
7.21.2.1.

Note that the requirement
32_NFR_ACC_Provide_dev_deploy_manag_config tools is also fulfilled by
EEE as it deploys the configuration (in other words FEMO) that is created using
Experiment Editor.

With respect to the experiments, the tool also provides them the option to
manage and configure the experiments (FEMOs) and services (FISMOs)
thereby fulfilling the requirement
35 NFR_PLA_Manage_resources_in_query_or_experiment. Note that using
the tool we allow the experimenters to manage their experiment. This is done
using the capabilities that the Ul provides and interactions the tool does with the
ERM. As this tool is a Ul based tool, the tool provides methods to visualize the
needed attributes in the experiment.

Copyright © 2017 FIESTA-loT Consortium 10

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

3.2 EEE and Receiver

Beyond those described in the previous version of the deliverable [1], Table 2 lists
requirements that are further satisfied by EEE and Receiver.

Table 2: Requirements addressed by EEE and Receiver

11_FR_ACC_Request_data_diff
erent_ways

23_NRF_ACC_Page_in_subreque
sts

24 _NFR_ACC_Tools_planning_a
uto_tasks
30_NFR_ACC_FIESTA_well_docu
mented
32_NFR_ACC_Provide_dev_depl
oy_manag_config tools

41 NFR_PLA_Minimize_process
ing_delay

42 _NFR_PLA_Data_generated_f
rom_processing_info
51_NFR_PLA_FIESTA hightly r
eliable

53_NFR_PLA_Execution_concur
rent_services

It must be possible for the experimenter to
request for data in different ways (e.g. event-
based, periodic, and/or autonomous)

When a large set of information is requested, it
should be possible to page it into different sub-
requests

FIESTA-IoT could provide tools to enable the
planning of automated tasks

FIESTA-IoT must be well documented.

FIESTA-IoT should provide development,
deployment, management, and configuration
tools

Processing delay has to be minimized when
requesting information

Data generated from processing information
could be provided to the experimenters

FIESTA-lIOT needs to be highly reliable

The platform must support execution of
concurrent

Services including data generation and usage
from the same resources

The EEE is a component that satisfies part of the non-functional requirement
32 NFR_ACC_Provide_dev_deploy manag config tools defined in [2]. Further,
EEE is able to:

e Schedule at a defined rate a FISMO (a service Model that describes the
experiment consisting of entities such as experiment control, details about the
query, see [8]) as a Job on the Meta Cloud with minimum possible delay: this
requires the EEE to read the QuerySchedule entity that is a part of FISMO,
connect to the Meta Cloud and use the Meta Cloud API to execute the query
defined in the Query attribute of the FISMO. EEE provides experimenters a
functionality to subscribe to any services (FISMOs) on top of their own FISMOs,
could request data in different ways for example, based on time period, and
could poll for certain data (event based). This satisfies the
11 FR_ACC_Request_data_different_ways. Different EEE APIs that support
this requirement are reported in Section 6.1.

Copyright © 2017 FIESTA-loT Consortium 11

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

e In order to efficiently serve the experimenters with the data with minimum
delays, EEE internally stores the service requests rather than contacting ERM
component. Thus, EEE satisfies the
41 NFR_PLA Minimize_processing delay.

e Schedule multiple FISMOs on the Meta Cloud simultaneously. This satisfies
53_NFR_PLA_Execution_concurrent_services.

e Poll a service to get the data: the EEE enables the execution of the query
defined in the Query entity of the FISMO once and on demand.

o After scheduling, EEE maintains a state variable of the scheduled job: this help
experimenters to know the state of their experiment.

e EEE maintains a log of executed jobs: this enables an experimenter to know
how many times a specific FISMO has been successfully executed.

o The Execution logs and state variables (processing information) is shown to the
experimenter via EEE. This targets the
42 _NFR_PLA Data_generated_from_processing info and is further
complemented by the monitoring tool.

e EEE schedules FISMO queries on loT-Registry or FAT in an automated manner
where experimenters are needed to just start/stop the process on EEE. This
feature enables 24_NFR_ACC_Tools_planning auto_tasks.

e Provide a mechanism to the experimenters to subscribe/unsubscribe to a
certain already discoverable FISMO: this enables experimenters to utilize
already existing FISMOs in their experiments. In order to subscribe, the
experimenter should provide the experimentOutput attribute in the FISMO so
that the EEE could deliver the output accordingly.

e On top of subscription, if an owner deletes a FISMO, then the subscribers will
not be notified about the deletion: this allows subscribers to keep execution of
the subscribed FISMO ongoing until the FISMO is unsubscribed.

e Be able to delete any experimenter related executing job from the EEE along
with its history.

e EEE is able to invoke related widgets like FIESTA-lIoT Analytics toolkit besides
just interacting with loT-Registry.

e EEE is able to send data in different formats required by experimenters.

e For a large resultset paging of the result is provided: this enables the
23 _NRF_ACC_Page_in_subrequests. This is achieved by the Sending module
of the EEE that breaks the large datasets into multipart before sending it to the
Receiver that concatenates these parts into one.

e The EEE is stable and satisfy the 51_NFR_PLA_FIESTA highly reliable.

e On top of above, all the APIs of the EEE are well documented (see Section 6.4)
and made available to the experimenters so that they can understand the
working of the EEE better. This ensures fulfilment of
30 NFR_ACC_FIESTA well documented with respect of EEE.

Copyright © 2017 FIESTA-loT Consortium 12

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

3.3 Experiment Execution Result-set Data store

Table 3: Requirements addressed by ERS

52_NFR_PLA_Elasticity_abundance_
computational_assets

FIESTA-loT should have elasticity and
abundance in terms of computational assets
(especially storage and computation)

The fit criterion with respect to the only requirement (listed in Table 3) satisfied by ERS
states that “FIESTA-IoT is able to store data from experiments during the requested
period and process any experiment that did not expire”. The ERS addresses this
requirement by providing a storage facility for experimentation results (or data), which
can be retrieved by the experimenter at a convenient time. Section 5.1 explains how

this storage facility works.

3.4 Experiment/Testbed Monitoring Tool

Table 4: Requirements addressed by Experiment/Testbed Monitoring Tool

15_FR_ACC_Discover_resource
s_by characteristics

22_NFR_ACC_Distinguish_type
_of_data

30_NFR_ACC_FIESTA well_docu
mented

35_NFR_PLA_Manage_resources
_in_query_or_experiment

39 _NFR_PLA_Info_testbed_agn
ostic_way

40 _NFR_PLA_Process_feedback
s

41 NFR_PLA_Minimise_process
ing_delay

42 _NFR_PLA_Data_generated_f
rom_processing_info

49 _NFR_PLA_Reliable_time_sy
nc

64_NFR_RES_Resource_provide
_characteristics

It must be possible to get/discover resources
based on characteristics

It must be clear to the experimenters what they
are receiving, (e.g. measurements, metadata,
resources, characteristics, etc.)

FIESTA-lIoT must be well documented.

FIESTA-loT should visualize and manage the
resources entailed in a specific query or
experiment

FIESTA-IoT must handle information in a
Testbed agnostic way

FIESTA-IoT should process the measurements
and / or resources feedback to validate the
functioning of resources

Processing delay has to be minimised when
requesting information

Data generated from processing information
could be provided to the experimenters

FIESTA-IoT should support testbeds in different
time zones

Every resource must be characterised

Copyright © 2017 FIESTA-IoT Consortium

13

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

65_NFR_RES_Resource_identif Eyery resource must be univocally identified by a
ied_code code

The Experiment/Testbed Monitoring Tool satisfies parts of the non-functional

requirement 35 NFR_PLA_Manage_resources_in_query_or_experiment.
Additionally, the non-functional requirements described in
40_NFR_PLA Process_feedbacks and

42 _NFR_PLA Data_generated_from_processing_info were addressed. Further,
the Experiment/Testbed Monitoring tool is able to:

e Show the monitored testbeds in a total view and showing the number of active
resources per testbed. Additionally, it shows every sensor per testbed with
metadata and latest observations. This addresses partially
35 _NFR_PLA_Manage_resources_in_query_or_experiment

e Process the gathered data of the testbeds used for monitoring in order to find
not working resources. The result of the processed data shall be available via
the API as well as the collected and transformed data. This addresses mainly
the two requirements 40_NFR_PLA Process_feedbacks and
42 _NFR_PLA Data_generated_from_processing_info

o Retrieving the data from the loT-Registry and storing it in a transformed way
into another database in order to prepare the data for the visualization and for
providing it via the API. This assures
41 NFR_PLA Minimise_processing_delay

e Providing the summarized overview and the detailed view per testbed in a way
that it is clear for the experimenter which information he/she is retrieving. This

fulfils 22 _NFR_ACC_Distinguish_type of_data,
49 NFR_PLA Reliable_time_sync,
64 _NFR_RES_Resource_provide_characteristics and

65 NFR_RES Resource identified code.

¢ Using the additional IDs per stored resource but also linking to the original ID,
which is used in the loT-Registry. So not only the combined and transformed
resources used in the Monitoring Tool can be addressed but also the original
resources. This makes sure that 39_NFR_PLA_Info_testbed_agnostic_way
is still fulfilled.

e The API is documented but also self-explanatory in its usage, as required by
30 _NFR_ACC_FIESTA_ well _documented.

e The API provides methods to mimic the same filtering methodology as it is used
in the loT-Registry, e.g., filtering resources by phenomena. This fulfils
15 FR_ACC Discover_resources_ by characteristics.

Copyright © 2017 FIESTA-loT Consortium 14

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

3.5 Portal

Table 5:Requirements addressed by Portal

20_FR_SEC_Experimenter_single Single-sign-on mechanism has to be in place
-sign-on

24_NFR_ACC_Tools_planning_aut FIESTA-IoT could provide tools to enable the
o_tasks planning of automated tasks

30_NFR_ACC_FIESTA_well _docume FIESTA-IoT must be well documented.
nted

35_NFR_PLA_Manage_resources_i FIESTA-IoT should visualise and manage the
n_query_or_experiment resources entailed in a specific query or
experiment

The FIESTA-loT portal plays the role of the user interface for all types of users. It
incorporates interfaces for managing and handling all functionalities provided by the
FIESTA-IoT platform. For logging in, a single security mechanism is used and the users
are only required to login once, they get a token, initiating a session and then they get
access to all functionalities, without the need to login separately (addressing the
20_FR_SEC_Experimenter_single-sign-on requirement) [10].

The portal includes also modules for running automated tasks, especially for the
registration of multiple resources (at once) or for scheduling the execution of
experiments (addressing the 24 _NFR_ACC_Tools_planning_auto_tasks
requirement).

Additionally, the portal provides a simple visualization tool for the results of a
query/experiment, so that experimenters can have a first look at the results.

Testbed providers and experimenters can also see real-time information about the
testbeds and the registered resources, to see which are online and sending data and
use it for debugging purposes (addressing the
35 NFR_PLA_Manage_resources_in_query_or_experiment requirement).

The FIESTA-IoT portal includes also a help section dedicated to the documentation of
all tools, services and APIs for the experimenters and the testbed providers
(addressing the 30_NFR_ACC_FIESTA well documented requirement).

Copyright © 2017 FIESTA-loT Consortium 15

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

4 FIESTA-IOT TECHNICAL ARCHITECTURE

A technical version of the FIESTA-IoT platform architecture is provided in Figure 2.
Note that, within the scope of this deliverable we are only limited to describe those
components that address the experimentation plane (upper part of the Figure 2).
Figure 3 provides this view. We next provide a brief description of the functionality of
the components:

loT-registry: This component is the cornerstone of the FIESTA-IoT platform. It is
the module in charge of handling the semantic information that flows across the
FIESTA-lIoT platform. Basically, it undertakes the control of the triple-store and
internally holds the overall semantic meta-repository. This component is already
described in [7] thus it is not described in this deliverable.

Experiment Registry Management (ERM): It is the registry where all the
experiments are stored. The Experiment Execution Engine and the Experiment
Management Console use the ERM APIs to read the information stored about the
experiment and take actions accordingly.

Experiment Management Console (EMC): It is the User Interface (Ul) to the
Experiment Execution Engine (EEE). Using this an experimenter can control the
execution of the FISMOs beyond what is specified via FEDSpec (FIESTA-loT
Experiment Description Specification). Using EMC an experimenter can also know
other related information about the experiment that he provided in the FEDSpec.
Experiment Execution Engine (EEE): Engine that executes the experimenter’s
need on the loT-Registry at a specified schedule. It defines a set of services/APIs
that are essential for the execution of the experiment. The EMC uses EEE APIs to
provide experimenters the execution related information.

Experiment Result Store (ERS): ERS stores the results that are not been sent to
the experimenter due to any reason like unavailability of receiver etc.
Experiment Data Receiver (Receiver): This component is usually executed on
the experimenter side and not on FIESTA-loT side. This component opens a
channel for receiving data from EEE after the execution of the query.
Experiment Editor (Editor): This component enables experimenters to quickly
create FEDSpecs and deploy them on the FIESTA-IoT platform. These FEDSpecs
will then be read by EEE and executed accordingly.

FIESTA-loT Analytics Toolkit (FAT): This component enables experimenters to
execute data analysis techniques on datasets retrieved from loT-Registry.
FIESTA-lIoT Monitoring: This tool allows experimenters to view basic statistics of
the data available within FIESTA-IoT ecosystem. It also allows experimenters to
know which testbeds are pushing data and how many resources are active in the
moment.

Reasoning: this tool allows experimenters to define their own reasoning rules (or
re-use rules defined by other experimenters) to run on top of the gathered data in
order to extract some results. The rules are in the form of “if-then” and can be run
on current or historical data streams.

Copyright © 2017 FIESTA-loT Consortium 16

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Statistics and resources Experimenter

availability monitoring

Rules definition
and execution

Experiment
Definition
(FEDSpec)

Rules

Experiment
Configuration

.Rem,

[Analytics

retrieval Experiment
execution

FAT —

Raw data
retrieval

f’xp. Resuldy
&

iot-registry

w

E Raw dat.
retrieval
S
o Raw data
™ retrieval
)
i) ”
o »+— cagerimen
Monitoring 3
°
— Repo
1 ‘ emantic
< Triplestore
-
w
Ll
—
L.

=]

Validator
Y

Semantic & Syntactic I |

T
MB
Dispatcher
Resource Message
discovery
Bus (MB)
. y 2
ISchedule|
1 TPIDMS

Testbed

Testbed & Resoufce Configuration &
Registration Management

- TPI -
. JRR] | Configurator [*=
. po I l

Get observations

TPS

Testbed stat:
Thonitoring. é{ S. Annotator

J Push observations

Testbed
administrator

Testbed

loT Service

Endpoint

&

Figure 2: FIESTA-IoT Technical Architecture (Full View)

iot-registry API direct interaction

Access to data through resources' loT Service endpoints

Copyright © 2017 FIESTA-IoT Consortium

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Statistics and resources Experimenter
avaﬂabnhtz mcmtonng
Rules definition o >
and execution < Experiment
Experiment Configuration
Definition Data Receiver

(FEDSpec) .
Receiver

-} Editor @ﬁ
Reasonmg] @j'I—‘ — EMC

-.L EEE |7 &
e

Raw datd Analytics
retrieval data

retrieval N experiment
execution

Raw data
retrieval

FAT foe
Experiment
egecutlon Raw data
retrieval
A

iot-registry API direct interaction

Monitoring

Stats
Repo

FIESTA-loT Platform
Experimentation tools

©

@ iot-registry

Figure 3: FIESTA-IoT Technical Architecture (Experimenter view)

An experiment is defined as “Experiment is a test under controlled conditions that is
made to demonstrate a known truth, examine the validity of a hypothesis, or determine
the efficacy of something previously untried” [11]. Nevertheless, as discussed
previously we focus on data-oriented experimentation that can be performed on loT
data stored in the FIESTA-IOT platform. To support experimentation, tools that enable
development, deployment and management of an experiment are developed and
integrated to fulfil the execution of an experiment. To brief about the tools (see Figure
3), using a Ul tool such as Experiment Editor an experimenter can create or develop
the DSL for the experiment based on their needs. This DSL, also called as a FEDSpec,
contains the specification for the EEE tool to execute the defined experiment. EEE
essentially schedules or deploys the experiment on the FIESTA-loT ecosystem based
on the provided specifications. The Experiment Editor uses ERM to save a FEDSpec
within the FIESTA-loT ecosystem. EEE then reads the specifications to schedule the
experiment on the FIESTA-loT ecosystem. EEE is accompanied by an experiment
controlling and management Ul (Experiment Management Console or EMC) that
enables experimenters to view execution summary and control the execution of their
experiment. Once an experiment is executed by the EEE, the output is sent to
experimenters, who have to to enable a Receiver on their side to get and handle the
results. In case these results are not delivered to the experimenter, they are stored in
an ERS repository where experimenters can download the results at will. Nonetheless,
these tools are also complemented by tool-specific dedicated public APls using which

Copyright © 2017 FIESTA-loT Consortium 18

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

experimenters can also develop their own experiment workflow in case needed. In
another case if an experimenter does not want to use such tools, they can create their
own experiment execution like module and query directly the loT-Registry using the
public loT-Registry APls.

A description of some of the components such as EEE and EMC was provided in the
V1 of the deliverable [1]. However, in this deliverable we focus on the components that
were not described previously. In the next subsection, we present, modified sequence
diagrams with respect to EEE functionality. We also show sequence diagrams for the
new components. For components like FAT, deliverable [6] provides more technical
details.

4.1 Sequence Diagram

The addition of the data analytics, result storage, and Experiment modelling has led to
a modified sequence diagram for the EEE. Note that sequence diagrams presented in
V1 of this deliverable are still valid except the starting of a service.

4.1.1 Starting Service with EEE

The updates to “starting of a service” sequence diagram is provided below in Figure 4.
Here, we introduce FAT, Sender module and the ERS. If an experimenter defines
widget parameter in the FISMO object of the FEDSpec, [12], towards the usage of FAT
EEE calls the FAT APIs instead of calling loT-Registry APIs directly. FAT then calls
the loT-Registry APls, gets the results and stores them in the ERS. Experimenters are
then required to call the ERS APIs to get the results. In Section 6.3 we define the ERS
APls. Instead, if the experimenter does not specify the widget, the EEE calls the loT-
Registry API to retrieve the results of the query specified in the FISMO object. EEE
upon a successful response from loT-Registry, sends the results to the experimenter
to the URL endpoint specified by them. If the send fails due to any reason, the EEE
stores the results in the ERS for experimenters to later get the results.

Copyright © 2017 FIESTA-loT Consortium 19

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

; : FIESTA-loT Experiment Registry

Management Component

i Result
Security . Experiment) - . Meta Cloud Sender B
Experimenter | | S oo Discovery Repository Manitor Scheduling Execution FAT Repository Repository

— login() FIESTA-loT Experimeit Execution Engine

L

[accessToken]

I E Tok

discoverExp(..,accessToken, mySQL query

Experimient list with —

[“dbtails | Xperiment list with

T details
Scheduled
[if Status=hot scheduled or nathing]
) start(explD,accessToken)
> Loop

[Schdule until Specified time]

getStatus()
Scheduled
[Status] 1=
— = Z» chedule(expip) | | notFAT]
getresult(spargl) sending

result [if successful]

send result

[Else] save

c[g‘\sFi]T(Param) D—’
[scheduled] getresult(sparql)
T T ‘_-__resvlt:‘
save >
setStatus("started'

[Else]
Scheduling Status < [alreadySchedule]

[if scheduled] successful .« — — — |

unSuccessful (-

getresults

Figure 4: Sequence Diagram for starting an Experiment
4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool

This section provides sequence diagrams for the Experiment/Testbed Monitoring tool.
Testbed Monitoring

Main Update Update Update _ -

activate
get-testbeds-info
store-testbeds-info
activate
get-sensors-info
store-sensors-info
activate

get-latest-observation-ime

get-observations

store-observations

Figure 5: Bootstrapping of the Testbed monitoring

The bootstrapping of the Testbed Monitoring can be seen in Figure 5. First the tasks
components “Update Testbeds”, “Update Sensors” and “Update Observations” for

Copyright © 2017 FIESTA-loT Consortium 20

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

retrieving the needed data from the IoT-Registry are started by the “main” component.

The retrieved data is transformed and is stored into the mongoDB. This makes sure

that enough data is available for the Ul and the API to serve requests properly.
Testbed Monitoring

. Security ET]

login
token D

request-page

GUI

get-data
deliver-data
deliver-page

login
token D

call-api

API

get-data
deliver-data

Figure 6: User Interaction with the Testbed Monitoring

In Figure 6 the two different options for retrieving either a page from the GUI or doing
a request against the APl are shown. The required login is for both operations
necessary. Also for every operation the data will be retrieved from the mongoDB in

order to serve the request in proper time.

deliver-result

Copyright © 2017 FIESTA-loT Consortium 21

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5 OTHER TOOLS
5.1 Experiment Result Store (ERS)

The ERS is a component within the Experiment Execution subsystem that provides a
temporary storage mechanism for experiments executed in an asynchronous manner.
This component allows experimenters to retrieve the results of their experiments at
their convenience. It should be noted that currently a result is removed from ERS once
the experimenter retrieves it.

Figure 7 shows the interactions that an experiment undergoes for the data to be stored
in the ERS. In the first step (as numbered in Figure 7), the experimenter invokes the
EEE to process their experiment. In the second step, the EEE will in turn invoke an loT
service to retrieve a dataset. This invocation of |oT service consists of invoking
components like FIESTA-loT Analytics toolkit or loT-Registry. In the third step, the EEE
will typically handle the request and store the result in the ERS. In the case of the FAT
service, FAT will forward the result dataset directly to the ERS. The Experimenters can
then call the ERS API to retrieve for results of their experiments.

| Experimenter

FIESTA-o

v .

Expertimentation

m™

Result Store Execution Engine

Analytics =—=-=w{ IoT Registry

Figure 7: Experimenter interactions with ERS

5.2 Experiment Data Receiver

As a sample, FIESTA-IoT should provide an Experiment Data Receiver that should
open a possibility for Experimenters to receive the data made available via EEE.
Experimenters can use this tool on their dedicated servers to receive the data. The tool
should be able to receive large data objects by the means of multipart file upload.
Internally this tool should be able to then save the received data in particular location
that is specified in the configuration of the tool.

Copyright © 2017 FIESTA-loT Consortium 22

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3 Ul Tools
5.3.1 Experiment Editor

The Experiment Editor is a Ul tool that experimenters could use to model and edit an
experiment. Once directed to the Experiment Editor, an experimenter would get a view
as shown in Figure 8 with a rectangular block and a number (variable) of square blocks.
The rectangle block contains:

e anumber denoting the number of FEMOs created by the experimenter,

e a search icon that is used to find the FEMO when domain of interest (DOI) is
provided and

e an “+”icon that represents “add a FEMO?”, i.e., to create new FEMO.

Each square block represents a FEMO that the experimenter has previously created.
The FEMO block consists of FEMO’s name, description, number of associated
FISMOs and list of DOls that are highlighted in different colour. Further, within each of
these FEMOs’ specific “square block”, there would be three choices of operations that
would represent (a) duplicate (b) edit, and (c) delete.

FEMO26thsep

this is just for a test

MyNewExperiment3
LargeScale crowdsensing

MyNewExperiment3
LargeScale crowdsensing

108 FEMOs

experiment

2 fismos

experiment

2fismos

1fismos

MyNewExperiment3
LargeScale crowdsensing
experiment

2 fismos

MyNewExperiment3
LargeScale crowdsensing
experiment

1fismos

MyNewExperiment3
LargeScale crowdsensing
experiment--newnewnew

2 fismos

MyNewExperiment3
LargeScale crowdsensing
experiment

2fismos

MyNewExperiment3
LargeScale crowdsensing
experiment

1fismos

New FEMO

1 fismes

New FEMO

1 fismos

this is just for a test

1 fismos

LargeScale crowdsensing
experiment

2fismos

=D [Health =3 = [Health
New FEMO New FEMO FEMO26thsep MyNewExperiment3--- MyNewExperiment3---

LargeScale crowdsensing
experiment

2fismos

Figure 8: Experiment Editor initial Ul

For the duplicate option, represented by the overlapping square boxes, by clicking on
it would create a new FEMO with the same parameter settings as the original FEMO.
The APIs that are used in the process are listed in the Scheduling API Specification
Section 6.1.1.

Every FEMO can be edited. This can be done by clicking on the FEMO block or by
clicking the “edit” icon. Once the parameters are changed, the experimenter can
commit the changes by clicking on the save button as shown in Figure 36 (Experiment
Template FEMO). The Edit feature is applied at the following three levels of
experiment: FEMO, FISMO and Query Control. Once the changes are made at any
given level, the Experiment Editor notifies the EEE and ERM about the state change

Copyright © 2017 FIESTA-loT Consortium 23

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

of the experiment. Before “saving” the changes, the experimenter could review the
changes using the “Preview” (as shown in the Figure 9) option available beside “Save”
option.

FEMO XML Preview

<ns2:FEM0 id="@1lcbf@@f-alc9-1le7-b@2b-fal63ella752" name="MyNewExperiment3"
xmins:ns2="http://www.fiesta-iot.eu/fedspec"
xmlns:ns3="http://www.w3.0rg/20@7/SPARQL/protocol-types#'>
<ns2:description>LargeScale crowdsensing experiment</ns2:description>
<ns2:domain0fInterest>http://purl.org/iot/vocab/m3-1ite#Transportation http://purl.org/iot/vocab/m3-lite#Environment http://purl.org/io
t/vocab/m3-lite#City http://purl.org/iot/vocab/m3-lite#Health</ns2:domain0OfInterest>
<ns2: FISMO id="@1cd@7d@-alc9-11e7-b@2b-falb3ella752" name="2ndUseCase">
<ns2:description=0Over time all noise observations for a given
location</ns2:description=
<ns2:discoverable>true</ns2:discoverable>
<ns2:experimentControl=>
<ns2:scheduling>
<ns2:startTime>2016-11-08T18:50:00Z</ns2:startTime>
<ns2:Periodicity=6@8</ns2:Periodicity=
<ns2:stopTime>2817-11-08T18:49:59Z</ns2:stopTime>
</ns2:scheduling>
<ns2: reportIfEmpty=true</ns2: reportIfEmpty=
</ns2:experimentControl>
<ns2:experimentOutput location="https://mimove-apps.paris.inria.fr/tomcat/ExperimentServer/store/"></ns2:experimentOutput=>
<ns2:queryControl>

Figure 9: FEMO XML Preview

As stated before, an experimenter can delete an Experiment by clicking the “delete”
icon on the FEMO block. This would trigger Experiment Editor to notify the EEE and
ERM of any experiment termination.

5.3.2 Experiment Management Console (EMC)

The EMC is a Ul where the experimenter could know about the status of their
experiment(s). The EMC would list experiments associated to an experimenter. Upon
selecting a specific FEMO, say “InriaExperiment” as in Figure 10, the details of the
experiment should be presented to the experimenter. This includes FEMO details,
associated FISMOs and other discoverable FISMOs. An experimenter should be able
to see the experiment ID, name, description and domain of interest. On top of this,
experimenters should have it handy the API through which they can download the
experiment results that were not sent to them due to some errors. Towards this, a
description or a footnote should be present that reflects this.

The “Associated FISMO” tab shows the “meta” information about the FISMO. This
“meta” information includes:

e The jobID of the FISMO if it is scheduled, if it is not scheduled then “Not Yet
Scheduled” information is displayed,

e The name and description of the FISMO,

e Experimenters can also start/stop a particular FISMO. By default, all the
FISMOs would have status set to “Not Yet Scheduled”. The experimenter
needs to explicitly start the FISMO to schedule it in the EEE. This would
change the status to “Scheduled” in the Ul,

Copyright © 2017 FIESTA-loT Consortium 24

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

The “Start Now” and “Stop Now” only provide experimenters the information to
either start the schedule or if the schedule already exists in the EEE then
pause the schedule of the respective FISMO.

The experimenters are be able to view the logs of the “Past executions”. This
includes information like date-time when the FISMO was successfully
executed with the size of the data consumed by the FISMO from the Meta
Cloud.

An experimenter is able to delete any scheduled FISMO. In case a FISMO is
not scheduled the experimenter is not able to delete the FISMO (i.e., they do
not see the delete button). If deleted, the FISMO is deleted from the EEE
along with all its references within EEE.

For “Subscribed” FISMOs (as such FISMOs are not owned), the relevant
information is shown including ownership status as “subscriber” and option to
unsubscribe the subscription.

Nevertheless, other than the above functionality experimenters should also
poll for results.

@ ® / ":] Experiment Management C x\

&« C | O https://platform.fiesta-iot.eu/experimentConsolefexperimentConsole.jsp

o rmy s . TR N P P L P
cxXperiment Management Lonsole

Experiments List

Experiment ID Experiment Name

SELECT
£928ebdc-f1f7-171e6-a6f/-fa163e11a752 InriaExperiment _

Figure 10: Experiment Management Console

The EMC should also provide an option for the experimenters to subscribe to already
available FISMOs within the FIESTA-IoT ecosystem. As the FISMOs are already
defined, the experimenter is able to:

View the existing FISMO of choice,

Provide URL location where the results of the execution of the subscribed
instance of the FISMO should be sent and

Subscribe the FISMO with the new URL location.

Nonetheless, despite subscribing using the URL location, the experimenter should not
be able to change any other parameter of the FISMO they subscribe to.

Copyright © 2017 FIESTA-loT Consortium 25

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.3 Reasoning tool (inference Tool)

The FIESTA-loT Reasoning component is an implementation of a semantic reasoner
that works on top of the FIESTA-IoT platform. The reasoner engine was described in
detail in Deliverable D3.6 [6], providing also details for the API for accessing the
reasoning services. In this deliverable, we describe the Ul developed within FIESTA-
loT and accessed through the portal, so that it can be used as a tool for experimenters
regardless if they are experts in semantics or not. Along with this description, the
readers are advised to read the respective Section 3.3 of D3.6 to become more familiar
with the architecture of the reasoning engine. Briefly, with the reasoning tool the
experimenters will be able to create inference rules in the form of expressions “if
(condition) then (result)” for example:

o If (temperature) > (25degrees) then (notify _hot)
. If (speed) < (30km/h) then (notify_traffic)
. If (temperature) < (19degrees) and (humidity) > (60%) then (notify_unhealthy)

5.3.3.1 Rule Creation

An experimenter could create new rules in two ways: as a semantic expert or as a non-
semantic expert. These actions could be performed on the FIESTA-IoT portal, where
there is a menu called “Reasoning”, which has 3 sub menus: Create Rule, Register
Rule, and Execute Rule. Note that the tool can also be used as standalone via
dedicated APIs, which were mentioned in [6].

Rules

D Mame User Id Description

8 Demo rule 1 testuseri Demo rule 1

] testl etragos

10 Myrule1 etragos this is a description
Myrule2 etragos

12 test22 etragos

13 Demco register one etragos Demo register cne

14 newPower etragos

Showing 1 - 7 of 7 items.

Figure 11: Create Rule Screen

Copyright © 2017 FIESTA-loT Consortium 26

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.3.1.1 Create new Rule — Semantic Expert

The FIESTA-IoT Reasoning module provides a simple Ul (see Figure 11) for enabling
experimenters to easily write the rule on a text-view. For assisting the experimenters
in this process, the Ul also provides sensor information base on the selected quantity
kind, so that experimenters can easily see information for the sensors, so that they
have a more detailed view when they create their own rule. Here, information like
sensor ID, sensor quantity kind, sensor unit of measurement, sensor latitude, sensor
longitude or current sensor data is presented as shown in Figure 12 and Figure 13.

Create or edit a Rule - For Semantic Expert

Name

Demo rulet

Description

Demo rulet

Select Quantity

Power ~

Select Sensor

hitps://platform. fiesta-iot ewiot-registry/apiresources/\VsnDY _ipleAhy2eCcSjxNRYGYBYsiws02b0-8KCr7 GKniKLgdas TdXIikjaADUHLE *
hitps://platform fiesta-ioteu/iot-registry/apifresources/SE2LONNAsD7 5WIgCk2vgnHisRxwUk2331TjeHpQR7D _lugZKoFebr 8XTtixWgl
hitps://platform fiesta-iot. eufiot-registry/apifresources/Ur7 Q-GLgxiL sTKAZhXEryue052DxDQzb8 xqKMPYLJZUITr-ZpAj1 ZK hi302054
hitps://platform.fiesta-iot. eu/iot-registry/apifresources/DYRYGYUZg7izBNUQgbjig64IYV3IDCdGKVTYLC ndHILSPTH3wKu_47BcAUOOg1
hitps://platform.fiesta-iot eu/iot-registry/apifresources/fRRAK2IA6S5GECca2gPQDENWZON-KLp820XHnXItm16LbPISitapxvigEcrPmiWu
https://platform fiesta-iot eu/iot-registry/apiresources/x1AibeGRXJDPUbYHcBOWoI22kDiTEwzjR 1144 5JQfIPuv0Y Jivisrb14 DRkpj7m\fv
hitps://platform.fiesta-iot eu/iot-registry/apifresources/KwobGde7MCT 1etEJD3XTNYjK1LNIOFVdJJ1DOsMHIMVOBYWW35bZV3INYMSBE
hitps://platform.fiesta-iot eu/iot-registry/apifresources/i6zudXsHdvXrTmJgDEM3Rr2QBFB8x5823XG0_9AndMxLUGWQo4WkyGC8O6X
hitps://platform_fiesta-iot eu/iot-registry/apifresources/RXjeO4K1xjS1RAMMyZ 3vDOrY LHyH2MATG kS XmomkuVmQn-HsSHDWVpmvgNd
https://platform fiesta-iot eufiot-registry/apiresources/PMIX3CTes3cuWxJhrXpfZzjgQXSOrARDLYMpOeL S3UE-2tPXZJKSEXRF_Z3POEI ,,

Selected Sensor ID

hitps://platform_fiesta-iot eufiot-registry/api/resources/Ur7 Q-GLgXLSKAZhXEryue052DXDQzbSxgKMPYLIZUITr-
ZpAj1ZK_hi30205gp8VEFe1a2jEzg_STnJkUCQHPS7gAg1DiohgUnfcli3289LvicuRMXIDPIZROI

Latitude

51.243343

Longitude

-0.5932438

Quantity Kind

http://purl.org/iotivocab/m3-lite#Power

Unit of Measurement

http://purl.orgfiot/vocab/m3-lite#\Watt \

Figure 12: Create new Rule when Semantic expert

Copyright © 2017 FIESTA-loT Consortium 27

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Rule content

This field is required.

@ Cance

Figure 13: Create new Rule when Semantic expert —Text view input

Experimenters can create a new simple rule with the “if then” logic within a query as
shown in Table 6. In this example, we apply rule “if power_consumption>0.56 Watt
then notify experimenter for high consumption”:

Table 6: Query for creating a Rule
@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>

@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix geo: <http://www.w3.0rg/2003/01/geo/wgs84 pos#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#> .
@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .
@prefix time: <http://www.w3.0rg/2006/time#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .
(?observation rdf:type ssn:0bservation),

(?observation ssn:observedProperty ?observedProperty),
(?observedProperty rdf:type m3-lite:Power),

(?observation ssn:observationResult ?sensorOutput),
(?sensorOutput ssn:hasValue ?obsValue),

(?obsValue dul:hasDataValue ?dataValue),

(?obsValue iot-lite:hasUnit ?unit),

(?unit rdf:type m3-lite:Watt),

greaterThan(?dataValue, "0.56"~"xsd:double) -> (?observation
reasoning:announce "high notification"~"xsd:string).

After filling all the required information as in the Ul (see Figure 12 and Figure 13),
experimenters can click on the “save” button and store the rule in the FIESTA-IoT
Reasoning database. Within FIESTA-loT, by default all the created rules are public
and available to all experimenters associated with FIESTA-IoT platform, hence all
these rules can be re-used by other experimenters. When the rule is created
successfully, the experimenter is redirected to the initial rule creation page, as shown
in Figure 11.

Copyright © 2017 FIESTA-loT Consortium 28

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.3.1.2 Create new Rule when Non-Semantic expert

The FIESTA-loT Reasoning tool also provides a simple Ul for experimenters who are
not familiar with semantics. To create a new rule, such experimenters would click on
the “Create new rule — Non-Semantic Expert” button. This option is much easier when
an experimenter does not have Semantic knowledge and wants to create new rules
with the IF THEN logic (see Figure 14).

Copyright © 2017 FIESTA-loT Consortium 29

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Create or edit a Rule - For Non-Semantic Expert
Name
Demo rulet

Description

Demo rulet

Select Quantity

Power E|

Select Sensor

-- Select Sensor —

hitps://platform_fiesta-iot.eu/iot-registry/apifresources/\snDY_ipleAhy2eCc5NRgGyBVsIws02bO-8KCr7 GKniKLgdas TdXItkjaADUHLE
hitps:/iplatform_fiesta-iot.eufiot-registry/apifresources/SE2LONNASDTSWIgCk2vgnHisRxwUK2331 TjeHpQRT7D_lugZKoFebr_8XTtixWaU
hitps://platform_fiesta-iot eu/iot-registry/apifresources/Ur7 Q-GLgxILSK4ZhXEryue052DxDQzb8xgKMPYLJZUITr-ZpAj1ZK_hi30205gp!
hitps://platform_fiesta-iot eu/iot-registry/apiresources/DYRIYEyUZ g7 [ig64lYV3IDCdGKVTYLCNdHILSPTH3wKu 47BcAUOD
hitps://platform fiesta-iot eu/iot-regisiry/api/resourcestRRAK2IAGS5GEca2qPQDENWZON-KLp820XHNXItm16LbPISitapxvigEc nPmWu
hitps://platform_fiesta-iot.eu/iot-registry/apifresources/x1Akibe GRXJDPUbYHc B9WoI22kDiTEwzjR 1t445JQfIPuvOYJivisrb14DRKpj 7Tm\v
hitps://platform_fiesta-iot eu/iot-registry/apifresources/KwobGdE7MCT 1etEJD3XTNY]K1LNIOFVAJJ1 DOsSMHIMVOBYWW35bZV3NYMEBE
hitps:/iplatform_fiesta-iot.eu/iot-registry/apifresources/iGzudXsHdvXrTmJgDEM3Rr2QBFB8x5823XGO_9AndMxLUGWQo4WkyGCBOEX
htlps leatform ﬂesta |ot euflot reglstryfaplfresourceszX]eOaiKJx]S1 R4MMyZSvDOrYLHyH2MAf8kSXmomkuVmOn HSSHDWmevgNd

Selected Sensor ID

https://platform fiesta-iot euliot-registry/apifresources
IDYRIYEyuZg7izBNUQQbjfge4ryVaIDedGKVTYLCNAHILSPTH3wKU_47BcAUOOGTmkiNg_ x8XzybC2wUo0s-
0E4XbkPWTXKOaJ6yyeah60yePP3sBTiwlKYvOTgMbJHh

Latitude

51.243343

Longitude

-0.5932438

Quantity Kind

hitp:/ipurl orgfiotivocab/m3-lite#Power

Unit of Measurement

http://purl.orgiiotivocab/m3-lite#Watt

+ New Rula
(IF #| [Power g [= ¢ | [Watt ¢ [THEN #| |high_notification ®
[IF % [Power g (< 4] |1 [Watt #| [THEMW #| | low_notification| &

oo 3

Figure 14: Create new Rule - Non-Semantic Expert

Copyright © 2017 FIESTA-loT Consortium 30

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

An experimenter can click on the add-new-rule button “+ New Rule” to add a new rule
or click on the remove icon “X” to remove it.

The FIESTA-IoT Reasoning tool will use the information added by the experimenter for
the selected quantity kind, and the rule logic in order to generate a rule template by
creating a SPARQL query as shown in Table 7:

Table 7: SPARQL query or a Rule

@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix geo: <http://www.w3.0rg/2003/01/geo/wgs84 pos#> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schemat> .

@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .

@prefix time: <http://www.w3.0rg/2006/time#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .

(?observation rdf:type ssn:Observation),

(?observation ssn:observedProperty ?observedProperty),
(?observedProperty rdf:type m3-lite:Power),

(?observation ssn:observationResult ?sensorOutput),

(?sensorOutput ssn:hasValue ?obsValue),

(?obsValue dul:hasDataValue ?dataValue),

(?obsValue iot-lite:hasUnit ?unit),

(?unit rdf:type m3-lite:Watt),

greaterThan(?datavValue, "1"~~xsd:double) -> (?observation reasoning:announce
"dangerous_notify"~*xsd:string).(?observation rdf:type ssn:Observation),
(?observation ssn:observedProperty ?observedProperty),
(?observedProperty rdf:type m3-lite:Power),

(?observation ssn:observationResult ?sensorOutput),

(?sensorOutput ssn:hasValue ?obsValue),

(?obsValue dul:hasDataValue ?dataValue),

(?obsvValue iot-lite:hasUnit ?unit),

(?unit rdf:type m3-lite:Watt),

lessThan(?dataValue, "1"~xsd:double) -> (Pobservation reasoning:announce
"lowpower_notify"~"xsd:string).

When an Experimenter clicks on the “Save” button, this rule will be stored in the
FIESTA-loT platform and then it will be public and re-usable by other experimenters.

5.3.3.1.3 Details of Rules

On the list of rules (see Figure 11) available on the FIESTA-IoT Reasoning, an
experimenter can view (for example Rule 14 as shown in the Figure 15) the details of
any rule by clicking on the “View” icon.

Copyright © 2017 FIESTA-loT Consortium 31

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Rule 24

Name rule 2
Userld etragos

Content

@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix geo: <http://ws.w3.org/2083/81/geo/wgsBa_post> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .
@prefix time: <http://uwes.w3.org/2006/timed#> .
@prefix rdf: <http://www.w3.org/1999/82/22-rdf-syntax-ns#> .
@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(2observation rdf:type ssn:Observation),
(?observation ssn:observedProperty 2observedProperty),
(?observedProperty rdf:type m3-lite:Power),
(?abservation ssn:chservationResult ?sensorOutput),
(?sensorOutput ssn:hasValue ?obsValue),
(?obsValue dul:hasDatavalue ?datavalue),
(?obsValue iot-lite:hasUnit ?unit),
(Punit rdf:type m3-lite:Watt),

lessThan(?dataValue, "S"**xsd:double) -> (Pobservation reascning:announce "HIGH power™**xsd:string).

SRR https://platform. fiesta-iot eu/iot-registry/apiresources

x1AXiIbeGRXJDPUDYHCBOWOI22KDITEWZ|R 1144 5JQNPuv0Y Jivisrb14DRKpj7mvws_Ax4eVEsSDr1 PMulAJxoj0uQF EZhf743kKon7 QVRC-
DmsGDOYEENXBKEOC9pd

Description this s 2 Gescription
Figure 15: Example of Rule details
5.3.3.1.4 Edit a Rule

The function for editing a rule is available only to those experimenters that have created
the particular rule. This means, an experimenter is not allowed to change a rule created
by other experimenters for security purposes.

On the screen showing the list of rules (see Figure 11) or on the rule details screen
(see Figure 15), when an experimenter clicks on the “Edit” button, the screen for editing
rules will be shown as in Figure 16 and Figure 17 (Note that in the Figure 17 an
experimenter can edit the rule in the provided textbox):

Copyright © 2017 FIESTA-loT Consortium 32

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Create or edit a Rule - For Semantic Expert

ID

24

Name

‘ rule 2|

Description

this is a description

Select Quantity

Power E|

Select Sensor

-

. O]

hitps:/iplatform.fiesta-iot eufiot-registry/apiresources/VsnDY _ipleAhy2eCc SxNRgGYBVsIwso2bO-8KCr7 GKniKLgdas TdXItkjaADUHLE
hitps://platform fiesta-iot. ew/iot-registry/api/resources/5E2L0nnAsD7 SWigCk2vgnHtsRowUk2331 TjeHpQR7D_lugZKoFebr_8XTtix\Wgl
hitps./iplatform.fiesta-iot eu/iot-registry/apiresources/Ur7 Q-GLgXILSTKAZhXTEryue0 52DxDQzb&NgKMPYLJZUITr-ZpAj1ZK_hi30205gpi
hitps.//platform.fiesta-iot eufiot-registry/apiresources/DYRIYEYUZg7izBNUQqgbjfg64IYVIIDcAGKVTYLCndHILSP7TH3wKU_47BcAUOOQ1
hitps://platform fiesta-iot. ew/iot-registry/apiresourcesARRAKZIAE S5 GEca2qPQDENWZON-KLp&2OXHnXItm1 6 LbPISitapxvig Ec ePmWu
hitps./iplatform.fiesta-iot eufiot-registry/api/resources/x1AXibe GRXJDPUDYHc BAWoI22kDIiTEWZjR 1144 5JQNPuvOY Jivisrb1 4DRKpj7mVy
hitps.//platform.fiesta-iot eu/iot-registry/apiresources/KwobGd6 7TMCT7 1etEJDIXTNYK1LNIOF VA1 DOSMHIMVOBYWW35hZVINYMoBE
hitps://platform.fiesta-iot eu/iot-registry/apiresources/i6zudXsHdvXrTmIgDEM3Rr2QBFB&x5823X GO _9AndMXLUGWQo4WkyGCEOE6X
hitps:/iplatform.fiesta-iot eufiot-registry/apiresources/RXje O4KJxS1R4AMMYZ3vDOrYLHyH2MATBKS XmomkuVmQn-HsSHDWWpmvgNd v

httne- linlatfarm fiscta int anlint ranictnilaniiracaoreac DMUMo 1B 0ty Th Y nf72inOWSArA DN RnOal 5208 HOVT IKeEvDE 72DNE
Selected Sensor ID

https://platform fiesta-iot eu/fiot-registry/apiiresources
M1AKIDeGRXJDPUDYHCBOWIZ2KDITEWZIR 1144 5JQfIPuv0YJivisro1 4DRkpjTmvws_Axd4eVEsSDr1 PMuOAJxoj0uQFEZh743kKon7QVRC-
DmsGDOYEEXBKEOC9pd

Latitude

91.243343

Longitude

-0.9932438

Quantity Kind

http://purl.org/iot/vocab/ma3-lite#Power

Unit of Measurement

http://purl.org/iot/vocab/m3-lite#Watt

Figure 16: Edit Rule Information

Copyright © 2017 FIESTA-loT Consortium 33

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

B
b
"ohservationSamplingTime™ : {
"@id™ : "http://purl.oclc.org/NET/ssnx/ssn#observationSamplingTime”,
"@type” : "@id”

b

"ohservedBy" : {
"@id" : "http://purl.oclc.org/NET/ssnx/ssn#observedBy”,
"Btype” : "@id"

b

“observedProperty™ : {
"@id"™ : "http://purl.oclc.org/NET/ssnx/ssn#tobservedProperty”,
"Etype” @ "@id"

b

"location™ : {
"@id" : "http://www.w3.org/20803/81/geo/wgs84 pos#location”,
"Btype” : "@id"

}

}
hy

Rule content

@prefix jof-lite: <http:/fpurl.oclc.org/NET/UNISfiware/iot-lite#= .

@prefix m3-lite: <http.//purl.orgfiotivocab/m3-litedt= .

@prefix ssn: <http:/fpurl.oclc.org/MET/ssnx/ssn#= |

@prefix geo: <http:/fwww.w3.0rgf2003/01/geo/wgssd_pos#s .

@prefix xsd: <http/iwww.w3. org/2001/XMLSchema#>

@prefix rdfs: <http/fww w3.org/2000/01/rdf-schema#> .

@prefix dul: <http:/www loa.istc_cnritontologies/DUL. owl#s |

@prefix time: <http:/mwww.w3.org/2006/time#: .

@prefix rdf- <http/iwww.w3.org/1999/02/22-rdf-syntax-ns#= .

@prefix reasoning: <https:/ffiesta-iof. eu/reasoning#= (?observation rdf:type ssn:Observation),
(?observation ssn-observedProperty 2observedProperty).

(?observedProperty rdf-type m3-lite:Power),

(?observation ssn:observationResult ?sensorQuiput),

(?sensorQutput ssn-hasvalue ?obsValue).,

(?gbsValue dulhasDataValue ?dataValug).

(?gbsValue iotite:nasunit 2unit)

(?unit rdf-type ma3-lite:Watt),

lessThan(?dataValue, "5""xsd:double) -= (Pobservation reasoning:announce "HIGH_power"™xsd:string).

Figure 17: Edit Rule content

5.3.3.2Rule Registration

After creating the rule template, an experimenter needs to first register the rule on a
selected sensor before executing it. This can be done through the “Reasoning” menu
on the portal by selecting the “Register Rule: sub menu. The following Figure 18 is
shown:

Copyright © 2017 FIESTA-loT Consortium 34

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Register Rules

Croate new Ragister Rula
D MNama Description User Id Rule
14 Demo ragister rule Diema register rule newPower

Showing 1- 1 of 1 itams.

Figure 18: Rule Registration home

For security/privacy reasons, each experimenter can only see his own registered rules
and not those of other experimenters.

5.3.3.2.1 Register a rule

When an experimenter clicks on the “+ Create new Register Rule” button, the Figure
19 is shown, where the experimenter can add information, such as the description of
the registered rule, the quantity kind and the sensor upon which the rule will be
executed, and also select the rule template to be used for this registration:

Copyright © 2017 FIESTA-loT Consortium 35

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Create or edit a Register Rule

Namea

Diemo register rule one

Description

Diemo on register rule one

Rule

 -- Select Rule -- 4|

Demao rule 1
testl
Myrulei
Myrule2
test22
Demao register one
new P ower
This Tield is requirad.

Select Quantity

b

-- Select quantity kind --

Select Sensor

-- Select Sensor -

Figure 19: Register Rule- Available Rules

As Figure 19 shows, an experimenter can select the rule template from the dropdown
menu that shows all the created rules on the platform. By selecting one rule, its detailed
information is shown in the “Rule content” field, as shown in Figure 20.

Copyright © 2017 FIESTA-loT Consortium 36

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Create or edit a Register Rule
Hama
Diemao register rule one

Description

Diemao on register rule one

Rule

a

newPower

Rule Gomtent

@ prefix iot-lite: <http.pur.cclc.org/NET/UNISfiwaresiot-lites> .

@ prafix m3-lite: <httpYpurl.orgfiotwocab/m3-lited = .

@profix 55n; <http:/purl.oclc.org/MNET/ssnx'ssn> .

@prafix geo: <httpaifeawwd org/2003/01/geciwgsBd_posds .

@prafix xsd: <htipuifwsnowdorg 2001 ML Schema>

@prefix rdfs: <httpufwawow3 org2000701 frdf-schemas |

@prafix dul: <httpyfwww loa.istc.cnrit'ontologies/DUL owl#= .

@prafix tima: <httpcffweww wi.om 2006 ime#s |

@prefix rdf: <htipdfaenaow I org/ 199902722 -rdf-syntax-nsd= .

@profix reasoning: <https:/fiesta-ict euwreasoning#> (?observation raf-type ssn:0Observation),
[Pobservation s=n:observedProperty TobservedProperty),

[PobservedProperty rdf:type m3-lite:Power),

[Pobservation ssnobservationResult YsensorOutput),

[?sensorDutput sen:hasValue TobsValus),

[PobsValue dulhasDataValue ?dateValus),

[PobsValue iot-ltechasUnit Tunit),

[Punit rdf: type m3-lita:Watt),

greaterThan(?datavalue, "0.1"**xsd:double) -> (?observation reasoning:announce “notify_high® **x=d:string).

Salact Quantity

e

Power

Salect Sensor

Figure 20: Register Rule - Detail Rule content

After selecting the rule template, the next step for the experimenter is to select the
sensor ID to register (the quantity is pre-filled according to the rule information) as
shown in Figure 21.

Copyright © 2017 FIESTA-loT Consortium 37

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Create or edit a Register Rule
Name
Mew registration1

Description

New registration1

Rule

‘ruled R

Rule Content

@prefix iot-lite: <http://purl.oclc_org/MET/UNISfiware/iot-lites#= .

@prefix m3-lite: <http://purl.orgfiotvocab/m3-lites#= .

@prefix ssn: <http://purl.oclc.org/MET/ssnxfssn##s

@prefix geo: <http:/imww w3.org/2003/01/geo/wgs84_pos#s= .

@prefix xsd: <hitp:/iwww.w3.org/2001/XMLSchema#s .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#s .

@prefix dul: <http://www loa.istc_cnritontologies/DUL owl#s .

@prefix time: <http/Mww w3 org/2006/time#= .

@prefix rdf: <http /w3 org/1999/02/22-rdf-syntax-ns#= .

@prefix reasoning: <https./fiesta-iot.eu/reasoning#= (?observation rdf.type ssn:Observation),
(7observation ssn:observedProperty ?observedProperty).

(?observedProperty rdftype m3-lite:Power),

(7observation ssn:observationResult ?sensorOutput),

(?sensorQutput ssn:hasValue 7obsValue),

(?obsValue dulhasDataValue ?dataValue),

(7obsValue iot-lite-hasUnit 2unit),

(?unit rdf type m3-lite:Watt),

lessThan(?dataValue, "5""xsd:double) -= (?0bservation reasoning:announce "HIGH™"xsd:string).

Select Quantity

Power ~

Select Sensor

— Select Sensor —

hitps_/iplatform.fiesta-iot eufiot-registry/api/resources/\V'snDY _ipleAhy2eCcSxNRQGYBVsIwso2bO-8KCr7GKnfKLgdas TdXitkjaADUHLE
hitps:/iplatform.fiesta-iot eufiot-registry/api/resources/SE2LONNASD7 SWIQCk2vgnHisRxwUk2331TjeHpQRTD_lugZKoFebr_8XTtix\Wgl
hitps://platform fiesta-ioteu/iot-registry/api/resources/Ur7 Q-GLgxiLsTK4ZhXEryue0 520xDQzb 8 Mg KMPYLIZUITr-ZpAj1 ZK_hi30205gp:
hitps_/iplatform.fiesta-iot eufiot-registry/api/resources/DYRIYEyuZg7izBNuQgbjige4YV3IDcdGKVTYLCndHILSPTH3WKu_47BcAUO0g1
hitps//platform.fiesta-iot eufiot-registry/api/resourc es/fRRAK2IABSSGECa2qPQDENWZON-KLpE2OXHNXIIM1E6LDPIStapxvigEC PmWu
hitps://platform fiesta-ioteu/iot-registry/api/resourcesfx1 Alkibe GRXJDPUbYHc BOWoI22kDiTEwzjR 1144 5JQf Puv0Y Jivisrb 1 4DRkpj 7miv
hitps_/iplatfiorm.fiesta-iot eufiot-registry/api/resources/KwobGd67MCT 1etEJD3XTNYjK1LNIOFVdJJ1DOSMHIMVOBYWW35bZWV3NYMS B
hitps//platform.fiesta-iot eufiot-registry/api/resourc es/i6Zud XsHdvXrTmJgDEM3Rr2QBFBEx5623XG0O_9AndMxLUGWQ04WKy GCBOEX
hitps:/iplatform fiesta-iot eufiot-registry/api/resources/RXjeO4KJxjS1RAMMyZ3vDOrYLHyH2MAfEkSXmomkuVmQn-HsSHDWWpmvghd |,

Figure 21: Register Rule - Select Sensor

After filling the required information on the form and clicking the “Save” button, the rule
registration functionality is finished and the new rule is registered and available for
execution.

Copyright © 2017 FIESTA-loT Consortium 38

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.3.2.2 Detail Rule registration

Another functionality on the initial screen that lists the existing rule registrations (as
shown in Figure 11) is to see the details of a registered rule, by clicking on the “detail”
icon (as shown in Figure 22).

Register Rule 20

Name reg1
Description

Rule Content

@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-Tites> .
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssmi> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .
@prefix time: <http://www.w3.org/2006/times> .
@prefix rdf: <http://www.w3.org/1999/82/22-rdf-syntax-nsi> .
@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type ssn:0bservation),
(?observation ssn:observedProperty ?observedProperty),
(?observedProperty rdf:type m3-lite:Power),
(?observation ssn:observationResult ?sensorOutput),
(?sensorOutput ssn:hasValue ?*obsValue),
(?obsvalue dul:hasDataValue ?dataValue),
(?obsValue iot-lite:hasUnit ?unit),
(?unit rdf:type m3-lite:Watt),

lessThan(2dataValue, "S"**xsd:double) -> (?observation reasoning:announce "HIGH"**xsd:string).

Sensor

hitps://platform.fiesta-iot.eufiot-regisiry/api/resources o
JKwobGdE7MCT1etEJb3xTNYjk1LNIOFVdJJ1 DOsMHIMVOBYWW35bZV3NYMSBKSSUIWUTm-
KY1HkfohcaSmDFMQhlezplalhuueGuysFIFShPafeda76yOdCQTvglsQzul v

Userld efragos

Reasoning
Figure 22: Register Rule — detailed information

5.3.3.2.3 Edit a Rule registration

When experimenters want to edit a rule registration, they can click on the “Edit” button

on the detail rule registration page or on the “edit” icon on the list of rule registrations
screen. Then, the following is shown (see Figure 23):

Copyright © 2017 FIESTA-loT Consortium 39

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Create or edit a Register Rule
ID
20

Name

reg

Description

Rule

rulet b

Rule Content

@prefix iot-lite: <http://purl_oclc.org/MNET/UNISHiware/iot-lited> . -
@prefix m3-lite: <hitp://purl.orgfiotivocab/m3-lited:= . v
@prefix ssn: <http-//purl.ocic.ora/NET/ssnx/ssn#= .
Select Quantity
Power ~
Select Sensor
~

— Select Sensor —

hitps //platform fiesta-ioteu/iot-registry/api/resources/VsnDY _ipleAhy2eCcSNRgGyBVsIwso2bO-8KCr7 GKnfKLgd a8 TdXItkjaADUHLE
hitps_/iplatform.fiesta-iot eufiot-registry/api/resources/SE2LONNAS D7 SWIgCk2vgnHisRxwUk2331TjeHpQRTD_lugZKoFebr_8XTtix\Wgl
hitps:/iplatfiorm.fiesta-iot eufiot-registry/api/resources/Ur7 Q-GLOxXILSTK4ZhXEryue0 52DxDQzb8xgKMPYLJIZUITr-ZpAj1ZK_hi30205gpi
hitps //platform fiesta-iot_eu/iot-registry/api/resources/DYRiYEyuZq7ZzBNuCQqbjig4YV3IDcd GKVTyLCndHILEP7H3wKu_47BcAUO0g1
hitps://platform. fiesta-ioteu/iot-registry/api/resourc es/tRRAK2IA655GEc a2gPQDENWZON-KLp8 20XHnXItm1E6LbPISitapxvigEc Pm!

hitps.//platfiorm.fiesta-iot eufiot-registry/api/resources/x1AKibe GRXJDPUDYHCBOWOI22KDITEWZR 1144 5JQNPuvOYJivjsrb14DRKpj 7mvv
hitps://platform fiesta-ioteu/iot-registry/api/resources/KwobGde 7MCT 1 etEJb3x TNY[k1LNIOFVdJ DOsMHIMYOBYyWW35bZWV3INYMSBE
hitps_/iplatfiorm.fiesta-iot eufiot-registry/api/resources/i6ZudXsHdvXrTmJgDEM3Rr2QBFBEx5823XG0O_9AndMxLUGWQ04 WKy GCBOE6X
hitps://platform.fiesta-iot_eufiot- reglstryf api/resources/RXjeQ4KJxjS1 R4MMyZSVDOrYLHyH 2MATEKS X momkuVmQn-HsSHDWVpmvghd ,

PO T O T N VU S S WU J S ST S T TS Y T T _ V1 P79 VS T SR T T TR ST Y Y T TN T T SO PO R T Y e Y Y

Selected Sensor ID

https://platform.fiesta-iot eufiot-registry/apiresourcestRRAK2IAGS5 GEca2qPQDEhVWzZON-
KLp8&20XHnXItm16LbPISitapxvigEc PmWuUDG-vacWexUTwrYj13_jt-101DzPKZABVIVYA_UVR77infGVILONISTMOCEY3rzBXR

{
“@graph” : [{
"@id" : “https://platform.fiesta-iot.eu/iot-registry/api/observations/2dVIkfexlgnTnPLdhpRxulr_tmglhfRKNeUaQIwdtFVngiT
X2HjdKw3_tqahxrusldSkqNX07MeYHUBREG-w_7HOxR_9N7jRzdtqBCu-npFcpQh2olzzUfP73xkEIQHT™,
"fitype™ : "http://www.w3.org/2006/time#Instant”,
"inXSDDateTime™ : "2817-11-24T15:17:087"

Figure 23: User Interface for editing a rule registration

The Experimenter can then edit the details of the registered rule, i.e. name, description,
select new rule, select another sensor and then click “Save” to update all information
on the FIESTA-IoT platform.

Copyright © 2017 FIESTA-loT Consortium 40

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.3.3Rule Execution

The final step after creating and registering a rule is to execute it. The FIESTA-IoT
platform provides three main functions for creating a “New execution”, performing a
“Re-execution” and viewing the details of an execution.

A Rule execution is the function where the registered rule is executed upon the input
sensor data, in order to create some inference data. The home screen of rule execution
is shown in Figure 24

Executions
4 New Exacution
D Start Time End Timea Status
2017-09-18T12:42:26.000+0000 201 7-09-18T12:42:26.000+0000 trug B
2 2017-09-18T12:42:54. 000+0000 2017-09-18T12:43:03.000+0000 true B
3 2017-09-18T12-45:13.000+0000 2017-09-18T12:45:15.000+0000 trua B

Showing 1 - 3 of 3 items.

Figure 24: Rule Execution Home page

5.3.3.3.1 Create a New Execution

When an experimenter clicks on the “+ New Execution” button, the following form is
shown (see Figure 25):

Copyright © 2017 FIESTA-loT Consortium 41

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

New Execution

Register Rule

reg1 ~

Sensor

https://platform fiesta-iot ewiot-registry/apifresources
KwobGdE7MCT1etEJD3XTNY[k1LNIOFWVdJJ1DOsSMHIMVOBYWW35bZV3NYMSBKSSUIWuUTm-
KY1HkfohcaSmDFMQhlezplalhuueGuysFIFShPafeda76yOdCQTvglsQzul

Rule Content

@prefix iot-lite: <http/Jpurloclc.org/MET/UNISfiwarefiot-lited#> _

@prefix m3-lite: <http://purl.org/iotivocab/m3-lite#= .

@prefix ssn: <http:/fpurl.oclc.org/NET/ssnx/ssn#> .

@prefix geo: <http:/fmww.w3.org/2003/01/geo/wgsB4_pos#: .

@prefixxsd: <http/iwww.w3.org/2001/XMLSchema#s .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#= .

@prefix dul: <http//www.loa.istc.cnrit/ontologies/DUL. owl#= .

@prefix ime: <http/fwww3.org/2006/ ime##= .

@prefix rdf. <http://www.w3.org/1999/02/22-rdf-syntax-ns#= .

@prefix reasoning: <https:/fiesta-iot eu/reasoning#> (?observation rdftype ssn:Observation),
(?observation ssn:observedProperty ?observedProperty),

(?observedProperty rdf:type m3-lite:Power),

(7observation ssn:observationResult ?sensorOutput),

(?sensorQutput ssn:hasValue ?obsValue),

(?obsValue dulhasDataValue ?dataValue),

(7obsValue iot-litezhasUnit Zunit),

(?unit rdf:type m3-lite:Watt),

lessThan(?dataValue, "5""xsd:double) -> (?observation reasoning:announce "HIGH""xsd:string).

Select Time For Execution

‘— Select Execution Type —

— Select Execution Type —

Current

Range

Figure 25: User Interface for creating a new Rule execution

In this form, the Experimenter can create a new execution, by selecting a registered
rule and setting the “Time for execution”, which can be either in the current
measurement or in the measurements within a time range.

5.3.3.3.2 New execution with current time

This rule execution happens when the experimenter selects the “Current” option and
clicks on the “Save” button. Then, the FIESTA-loT Reasoning module will execute this
registered rule (sensor, rule), giving the result of the execution, which can be either
“true” (success) or “false”, together with other details, such as the start, end time,
sensor id, rule content, original data, inference data, and full data.

Copyright © 2017 FIESTA-loT Consortium 42

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.3.3.3 New execution with period or range of time

When an experimenter selects the “Range” execute option, he will be able to select
the starting and ending date of the measurements to be considered in this rule, as
shown in Figure 26.

New Execution

Register Rule

reg1 -

Sensor

hitps.//platform.fiesta-iot.eu/iot-registry/apifresources
TKwobGde7TMCT1etEJo3xTNYjk1LNIOFVdJJ1DOsMHIMVOBYyWW35bZV3NYMSBKSSUMUTM-
KY1HkfohcaSmDFMQhlezplalhuueGuysFIFShPafedaTeyOdCQTvglsQzul

Rule Content

@prefix iot-lite: <http:/fpurl.oclc.org/NET/UNIS/ iwarefiot-lite#s .

@prefix m3-lite: <http://purl_org/iotivocab/m3-lited= .

@prefix ssn: <http./purl.oclc.org/NET/ssnxf/ssn#> .

@prefix geo: <http:/imww w3.0rg/2003/01/geo/wgss4_pos#> .

@prefix xsd: <hitp/iwww.w3.0rg/2001/XMLSchema#= .

@prefix rdfs: <http://iwww.w3.0rg/2000/01/rdf-schema#> .

@prefix dul: <http/mww loa.istc.cnritontologies/DUL. owk= .

@prefix time: <http//www.w3.org/2006/ime#= .

@prefix rdf: <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix reasoning: <https:/ffiesta-iot. euwreasoning#= (?observation rdf:type ssn:Observation),
(?observation ssn:observedProperty ?observedProperty),

(?observedProperty rdf:type m3-lite:Power),

(7observation ssn:observationResult ?sensorOutput),

(?sensorQutput ssn:hasValue ?obsValue),

(?obsValue dulhasDataValue ?dataValue),

(7obsValue iot-lite:hasUnit ?unit),

(?unit rdf:type m3-lite:Watt),

lessThan(?dataValue, "5"""¥xsd:double) -= (?observation reasoning:announce "HIGH"xsd:string).

Select Time For Execution

Range v
Start

2017-11-13 15:18 =
End

2017-11-14 00:00 =

Figure 26: Execute Rule on sensor base on specific time

The FIESTA-loT Reasoning will execute a SPARQL query to retrieve sensor data as
shown in Table 8:

Copyright © 2017 FIESTA-loT Consortium 43

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Table 8: SPARQL Query

PREFIX iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
PREFIX m3-lite: <http://purl.org/iot/vocab/m3-lite#>

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

PREFIX geo: <http://www.w3.0rg/2003/01/geo/wgs84_pos#>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
PREFIX time: <http://www.w3.0rg/2006/time#>

SELECT ?sensingDevice ?dataValue ?dateTime ?observation
?sensorOutput ?obsValue ?instant
WHERE {

?observation ssn:observedBy ?sensingDevice .

VALUES ?sensingDevice {
<https://platform.fiesta-iot.eu/iot-registry/api/resources/Ur7Q-
GLgxilLsfK4ZhXffEryue@52DxDQzb8 jxqKMPyLIZUiTr-
ZpAjlZK_hi30205gp8V6Fela2jEzg STnIkUCQHp8f7qAglDiohqUnfcll3289Lvfcu
RmXiDPfZRO1>} .

?observation ssn:observationResult ?sensorOutput .

?sensorOutput ssn:hasValue ?obsValue .

?obsValue dul:hasDataValue ?dataValue .

?observation ssn:observationSamplingTime ?instant .

?instant time:inXSDDateTime ?dateTime .

FILTER (
(xsd:dateTime(?dateTime) > xsd:dateTime("2017-09-
16T723:00:00Z"))
&& (xsd:dateTime(?dateTime) < xsd:dateTime("2017-09-
17T23:00:00Z"))
)

}ORDER BY ?sensingDevice ASC(?dateTime)

5.3.3.3.4 Re-Execution

When an experimenter wants to repeat an execution of the rule, he can just click on
the “Re-execute” button on the list of executions. Then, a similar form as with the rule
execution will be shown (see Figure 27) and the user will be allowed to select if he
wants to re-execute the rule on the current measurement or on a range of
measurements.

Copyright © 2017 FIESTA-loT Consortium 44

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

New Execution

ID

28

Register Rule

— Select Rule Registered — -

This field is required
Sensor

https://platform.fiesta-iot.eu/iot-registry/api/resources
IKwobGd67TMCT1etEJb3xTNYjk1LNIOFVdJJ1 DOsMHIMVOBYyWW3SbZV3NYMSBKSSUIWUTm-
KY1HkfohcaSmDFMQhlezplalhuweGuysFIF ShPafeda76yOdCQTvglsQzul

Rule Content

@prefix iot-lite: <http://purl_oclc.org/NET/UNIS/fiware/iot-liteds .

@prefix m3-lite: <http:/ipurl.org/iotivocab/m3-lited= .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#s

@prefix geo: <http//mwww w3.org/2003/01/geo/wgss4_pos#s .

@prefix xsd: <hitp:/iwww.w3.0rg/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

@prefix dul: <http:fmww loa.istc_cnrit/ontologies/DUL owk#> .

@prefix time: <http/iwww.w3.org/2006/time#= .

@prefix rdf: <http//ww.w3.org/1999/02/22-rdf-syntax-ns#= .

@prefix reasoning: <https:/ffiesta-iot.eu/reasoning#= (?observation rdf:type ssn:Observation),
(7observation ssn:observedProperty ?observedProperty),

?observedProperty rdf:type m3-lite:Power),

?observation ssnobservationResult ?sensorQutput),

?sensorOutput ssnthasvalue ?obsValue),

?0bsValue dul:hasDataValue ?dataValue),

?obsValue iot-literhasUnit 2unit),

2unit rdf-type m3-lite:Watt),

lessThan(?dataValue, "5"**xsd:double) -= (?observation reasoning:announce "HIGH""xsd:string).

(
(
(
(
(
(

Select Time For Execution

‘— Select Execution Type — L

— Select Execution Type —

Current

Range

Figure 27: Re-Execute Rule
5.3.4 FIESTA-IoT Acquisition Toolkit

Other than being a web service, the FAT can also be accessed through a web Ul. This
interface allows an experimenter to interact with the FAT toolkit visually for single
experiments. The page mainly consists of three tabs (see Figure 28). The first being
the “Input”. This allows the user to provide the SPARQL query for the dataset and the
methods/parameters to apply on it (see Figure 29). Once this is submitted the result is
displayed in the “Result” tab (see Figure 30). A plot for certain methods will be provided
in the third tab, which is under development.

Copyright © 2017 FIESTA-loT Consortium 45

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FIESTA-IoT Analytics Toolkit

© Input

© Result

Q Plot

Figure 28: Analytics Toolkit Tabs

~Welcom

1) Input the SPARQL query
2) Input the required methods and parameter
3) Result will be presentad in table below

4) A plot will be available based on final method applied

~SPARQL Query

PREFIX m3-lite: <http://purl.org/iot/vocab/m3-litez=

PREFLX ssn: <http://purl.oclc.org/NET/ssnx/ssn# >

PREFIX geo: <http://www.w3.0rg/2003/01/geo/wgs84_posz =
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema# >
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl# >
PREFIX time: <http://www.w3.0rg/2006/time# >

SELECT ?sensingDevice ?dataValue ?dateTime
WHERE {
?sensingDevice a m3-lite:EnergyMeter .
?sensingDevice iot-lite:hasQuantityKind ?gk .
7gk a m3-lite:Power .
?sensingDevice iot-litethasUnit 2unit .
?unit a m3-lite:Watt .
?sensingDevice iot-lite:isSubSystemOf ?device .
?device a ssn:Device .
?device ssn:onPlatform ?platform .
?platform geo:location ?point .
?point geo:lat ?lat .

?observation ssn:observationResult ?senserOutput .
?sensorQutput ssn:hasValue ?obsvalue .
?obsValue dul:hasDatavalue ?dataValue .

~Methods and Parameters

Method: | Qutlier v | Threshold 0.5

Method: | Correlation M

Submit

\

Figure 29: Analytics Input Tab

Copyright © 2017 FIESTA-loT Consortium

46

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FIESTA-IoT Analytics Toolkit

© Input

© Result

(http:/fsmart-ics.ee.surrey.ac.uk/fiesta-iot/resource/sc-sics-sp-002-power, http: //smart-ics.ee.surrey.ac.uk/fiesta-iot/resource/sc-sics-sp-
001-power
0.0,1.432187701766452e-14,1.9040324872321435e-14
0.00819672131148,10.483904864244515,12.66849135485158
0.016393442623,10.037536235817262,11.694920662095793
0.0245901639344,8.274302461842944,10.787303553017295
0.0327868852459,6.936821514862263,8.95507559616293
0.0409836065574,5.322012117131182,6.684190365116811
0.0491803278689,4.0828434819081725,4.156983856615794
0.0573770451803,2.267728032490481,2.530561320212919
0.0655737704918,0.6565507982225585,0.6050609198606894
0.0737704918033,1.3997255070742531,1.0709031869904239
0.0819672121148,1.665701660453452,2.954284570154875
0.0901639344262,1.6320456294700227,2.5005243782136066
0.0983606557377,1.5195656197778484,2.7019058846634727
0.106557377049,1.7032740779107890,1.92351946952210523
0.114754098361,1.1606817046651623,1.3841588916955312
0.122950818672,0.9759542883964644,1.1141643459176616
0.131147540984,0.803968287476381,0.9759555460715083
0.139344262295,0.86074385864239332,0.9574465954445273
0.147540983607,0.824244628650112,1.0134595786907683
0.155737704918,0.7870993791699495,0.9224708360298194
0.16393442623,0.75080236950768632,0.8851635436478202

0.172131147541,0.71827134441754,0.8486748708149143 -
0.180327968852,0.690940318559508,0.8163141212459859 p
© Plot

Figure 30: Analytics Toolkit Result

5.3.5 Experiment/Testbed Monitoring Tool

The Testbed Monitoring Tool is intended to provide FIESTA-I0T users with information
about the data that is sent by testbeds and can be used by experimenters via the
FIESTA-IOT portal.

5.3.5.1UI Specification

The Testbed Monitoring is embedded in the portal as an iframe and can be used as
every other component of the portal.

Copyright © 2017 FIESTA-loT Consortium 47

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FIESTA IoT (®) Ronald steinke

Ronald Steinke
online Dashboard

@ Home
£ Tools
O Testbe

(=R

© Help

& Create Ticket

Testbed Overall Contact

http://api.smartsantander.eu#SmartSantanderTestbed 917 /2699 your-email@testbed.com

http://smart-ics.ee.surrey.ac.uk/fiesta-iot/deployment#smart-ics 516 /649 your-email@testbed.com

http://iotocean.org/ontologies/ketiOntology.owl#ketitestbed 0/36 your-email@testbed.com

http:z//www.soundcity.mobi/SoundCityTestbed 0/24 your-email@testbed.com

http://api.nitos.inf.uth.gr#NITOS-WSN-Testbed 58 /62 your-email@testbed.com

Figure 31: The Testbed Monitoring Tool embedded in the FIESTA-loT portal

As seen in Figure 31 the Testbed Monitoring can be found under the Tools section as
Testbed monitoring.

Its start page is the overview of all monitored testbeds. Here, the locations of the
testbeds can be seen in a map and a table, which lists their name, the number of active
sensors and total number of sensors, and the contact for each testbed. Here the total
number of sensors means all registered sensors in the FIESTA-IoT platform belonging
to this testbed and active sensors are resources that have an observation in the last
24 hours.

By clicking on one of a testbed, a detailed view lists all its underlying sensors and their
locations in the map. For every sensor, the internal ID of the sensor used by the
Monitoring Tool, the quantity kind, the last observation, the unit and the location are
listed. The quantity kind and unit are using the m3-lite Taxonomy [13]. If a sensor is
clicked, a modal view pops up, and shows a graph of the latest observations of this
sensor and the sensor ID that is used by interacting with the loT-Registry.

FIESTA-loT admins can open the settings view where testbeds can be enabled for
showing in the Ul or disabled again. The Monitoring Tool provides a notification system.
This can be used to receive a notification mail, when a testbed reaches a predefined
state, e.g., the number of active sensors reaches a threshold. Experimenters can use
this if they find a testbed with problems and want to get informed when it is ready to be
used again. By the time writing this deliverable, this function was not yet implemented.

More detailed information about the usage of the Monitoring Tool can be found in
Deliverable 3.6 [6].

Copyright © 2017 FIESTA-loT Consortium 48

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.5.2 Implementation

The system is integrated into the platform as an additional component.

http://status.fiesta-iot.eu

Testbed Name [Ping Time _|AP Calls | Available Resources Internal Status
2222 ! [t 2
= ‘ ad :
/

User

IREST
FIESTA-loT Platform
Testbed

loT-Registry +——>» Monitoring Notification(s)
DB i I DB
passive

OpenAM

Figure 32: Testbed Monitoring component in the FIESTA-loT Platform

As seen in Figure 32, the monitoring component connects to the Mongo DB and uses
it for storing its data. It is also connected to the loT-Registry in order to querying data
of the platform. In addition, the monitoring tool asks the OpenAM service to use the
information of every logged-in user to get the role of it and adjust the view.

5.3.5.2.1 General Procedure

The general procedure of the Monitoring tool is the following. In the beginning the
configuration is read and the components like tasks, the database connection and the
webserver are properly configured.

In the initialisation phase the background tasks will be started. These tasks are mainly
to query the loT-Registry for the relevant information like testbeds, resources and
observations. In the future, tasks regarding analysis will be started in the beginning.
Afterwards the Flask server is started for serving the GUI and the API.

5.3.5.2.2 Bootstrapping

The bootstrapping is done by the tasks that are related to the loT-Registry. In this
phase, the database will be cleaned when it is configured to do so. If not, the database
will be searched for the latest observation time in order to properly set up the query for
following observations. The tasks for updating testbeds and resources information will
be activated. They will retrieve all relevant data from the loT-Registry and store it into
the database. The tasks are configured to be run on an interval base. When this is
done, the task for querying observations is done. This task will use either the latest
stored observation or a pre-configured time span in order to start the querying for
observations. The retrieval of observations is done in smaller steps until it reaches the
actual time and starts normal interval based updates. After this initial bootstrap, the

Copyright © 2017 FIESTA-loT Consortium 49

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

database is filled with the initial data and tasks like analysis and the webserver will be
started.

5.3.5.2.3 Querying the loT-Registry

As the Monitoring tool is deployed on the same machine as the loT-Registry, for
retrieving the testbeds information, the loT-Registry API are used to directly retrieve
the testbed names and IRIs (Internationalized Resource Identifier).

The gathering of all resources and observations is done via executing SPARQL
queries. An example query to retrieve all sensors is provided in Table 9

Table 9: SPARQL Query

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
PREFIX iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-1lite#>
PREFIX geo:<http://www.w3.0rg/2003/01/geo/wgs84 pos#>
SELECT ?s ?gkt ?st ?ut ?lat ?long ?depl WHERE {
?s iot-lite:hasQuantityKind ?qgk .
?gk a ?qgkt .
?s a ?st .
?s jot-lite:hasUnit ?u .
u a ut .
OPTIONAL {
?s ssn:hasDeployment ?depl .
?s ssn:onPlatform ?plat .
?plat geo:location ?p .
?p geo:long ?long;
geo:lat rlat

} .
OPTIONAL {
{
?s iot-lite:isSubSystemOf ?dev .
?dev ssn:hasDeployment ?depl .
?dev ssn:onPlatform ?plat .
?plat geo:location ?p .
?p geo:long ?long;
geo:lat r?lat
}
OPTIONAL {
?dev ssn:hasSubSystem ?s .
?dev ssn:hasDeployment ?depl .
?dev ssn:onPlatform ?plat .
?plat geo:location ?p .
?p geo:long ?long;
geo:lat rlat
T .
T .

Copyright © 2017 FIESTA-loT Consortium 50

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FILTER(bound(?plat)) .

Using the query, a search is performed for sensors that have a unit and a quantity kind.
The sensor also has to have a testbed deployment and has to be on a platform that
has a location. The deployment is used to determine afterwards to which testbed the
sensor belongs. For every sensor the type, the unit, the quantity kind, the testbed and
the location are stored into the database. Table 10 lists a sample query for retrieving
observations:

Table 10: SPARQL Query

Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
Prefix time: <http://www.w3.0rg/2006/time#>
Prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#>
Prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
select ?s ?ti ?dv where {

?0 a ssn:0Observation .

?0 ssn:observedBy ?s .

?0 ssn:observationResult ?or .

?or ssn:hasValue ?ov .

?ov dul:hasDataValue ?dv .

?0 ssn:observationSamplingTime ?ot .

ot time:inXSDDateTime ?ti .

Using the query, all observations are collected. For each observation: the related
sensor, the time and the value is also gathered. The observations will be stored for
every sensor in an array. For each observation, the value and the timestamp are only
stored, other meta information like unit is retrieved from the sensor itself.

To limit the time to a specific interval, the loT-Registry API supports setting the time
boundaries per URL query parameters in the following way:

POST <OBSERVATIONS_QUERY_URL>?from=<FROM>&to=<TO>

Where the query url is /iot-registry/queries/execute/observations and
<FROM> and <TO> are timestamps in the form ‘YYYYMMDDHHmm’. See [7] for more details.

5.3.5.2.4 Database operations

The mongoDB is accessed via the pymongo module that maps the basic operations
provided by the database to python. The tasks that will query the loT-Registry are using
the database to store all information that will be later consumed by other components
of the tool.

The webserver that provides the GUI and the API is using the database to get the
information, transform it in the required form and serve it.

Copyright © 2017 FIESTA-loT Consortium 51

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

5.3.5.2.5 Ul tasks

The webserver fulfils two kinds of operations. The first is to provide the web sites in
order to see the overview of all operations and also to present the detailed view of any
testbed. The other is to provide an API for the data that is stored into the database.

5.3.5.2.6 Requesting OpenAM

In order to generate a specific view per user role in the Ul, the monitoring tool uses the
security component of the FIESTA-IoT platform. The Ul is embedded in the portal Ul
that is protected by the security component. After a user is logged-in, a header is set
for every further call. The monitoring tool uses this header in order to query the role of
this specific user. After this, the required Ul is compiled and delivered.

Copyright © 2017 FIESTA-loT Consortium 52

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

6 EXPERIMENTATION SERVICES AND API SPECIFICATION

6.1 Experiment Deployment Services

Below we list the experiment deployment related services provided by EEE. These
services are services that ensures and target scheduling aspects, subscription and

polling.

6.1.1 Scheduling APIs

The /startFISMOExecution starts the schedule as specified in the FISMO object.
This API upon successful starting returns {“response”: “Job Scheduled”,
“jobID”: <JobID>}. The jobID and the status are stored in a database. The API
reads the FISMO object associated with the FISMOID and its QuerySchedule attribute
that contains scheduling information. The following scheduler services can be invoked
using a path https://<HOST>:<PORT>/schedulerServices/scheduler/<API>

API /startFISMOExecution

Description | This APl is used to start execution of the experiment service (FISMO).
This API provides a jobID to the FISMO upon the successful scheduling
on the Meta Cloud. The API uses timeSchedulePayload to define the
startTime, stopTime and periodicity of the job to be executed.

Method POST

Input HeaderParam: String fismoID
HeaderParam: String femolID
HeaderParam: String iPlanetDirectoryPro
HeaderParam: String timeSchedulePayload
The timeSchedulePayload is a JSON string that should contain
startTime, stopTime and periodicity. A sample of such JSON is
{"startTime":"2016-09-15T13:57:00.0Z", ‘"stopTime":"2016-
09-15T16:30:00.0Z","periodicity":60}. Here startTime and
stopTime are in Date format (YYYY-MM-DD’ T’HH:mm:ss.SSS’Z”) and
the periodicity is in seconds. The default value is set to “". The empty
string is interpreted as 0.

Output {“response”: “Job Scheduled”, “jobID”: <JobID>} is returned
as a Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.
If the status is scheduled then jobID is returned.

Produces | application/json

Copyright © 2017 FIESTA-loT Consortium 53

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Errors

e ‘“NoSuchServiceModelObjectID”: FISMOID is incorrect or
does not exist.

e “InvalidTimeScheduleStructure”: timeSchedulePayload
JSON structure is incorrect or does not exist.

e “UnParsableDate”: either startTime or stopTime is not in
the correct format and thus cannot be parsed in the required
format.

e “SchedulerException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException”: is a generic error however with
respect to this API it would mean “Failed to execute”

To retrieve

the JjobIDs for a particular already scheduled FISMO,

/getJobIDsfromFISMOID is used.

API

/getJobIDsfromFISMOID

Description

This API is used to get the jobID of a particular already scheduled
FISMO. Note that this JobID is the ID given by the Scheduler to the
FISMO execution.

Method

GET

Input

HeaderParam: String fismoID

HeaderParam: String iPlanetDirectoryPro

Output

{“jobIDs”: [<JobID1>, <JobID2>..]} is returned as a Response
if successful. Here the JobIDs is a list of job IDs associated to the
FISMOID. A list is returned because there might be subscribers who
might have subscribed to a particular FISMOID. Each subscription to a
FISMOID, provides a new jobID to the subscription. This is because
we consider each subscription to be different. {“response”: “No
Jobs»} is also returned if there is no Jobs found for a particular
FISMO. {“response”: <ERROR>} is returned as a Response if
unsuccessful.

Produces

application/json

Errors

e “NoSuchServiceModelObjectID”: FISMOID is incorrect or
does not exist

e ‘“SchedulerException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException®:is a generic error however with
respect to this API it would mean “Failed to execute the API”

Copyright © 2017 FIESTA-loT Consortium 54

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

To retrieve

jobID from a given fismoID, userID and femolD,

/getJobIDfromFISMOIDUserIDandFEMOID is used.

API /getJobIDfromFISMOIDUserIDandFEMOID

Description | This API is used to get the jobIlD associated to a particular fismoID,
userID and femolID ftriple.

Method GET

Input HeaderParam: String fismoID
HeaderParam: String femoID
HeaderParam: String iPlanetDirectoryPro
QueryParam: Boolean owner (default value true)

Output {“jobID”: <JobID>} is returned as a Response if successful.
{“response”: “No Job ID”} is also returned if there is no JoblD
was found for the input pair. {“response”: <ERROR>} is returned as
a Response if unsuccessful. For the possible list of error please see the
Errors row below.

Produces | application/json

Errors e “NoSuchServiceModelObjectID”: FISMOID is incorrect or

does not exist
e “NoSuchExperimentID”: FEMOID is incorrect or does not exist
e “PersistenceException”: is a generic error returned by the
Quartz scheduler.
e “ImplementationException”: is a generic error however

with respect to this API it would mean “Failed to execute the
API”

To retrieve the details about a jobID, /getJobIDDetails is used.

API /getJobIDDetails

Description | This API is used to get the details associated to a particular jobID.
Method GET

Input HeaderParam: String jobID

Copyright © 2017 FIESTA-loT Consortium 55

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

HeaderParam: String iPlanetDirectoryPro

Output

{“JobID”: <JobID>, “Group”: <GroupID>, “timeSchedule”:
{“startTIme”: <startTime>, “stopTime”:<stopTime>,
“periodicity”:<periodicity>}, “status”:<status>} is
returned as a Response if successful. Here the groupID is the
FISMOID and status is a job status from the list [BLOCKED,
COMPLETE, ERROR, NONE, NORMAL, PAUSED]. {“response”: “No
Job information found”} is also returned if there is no Jobs data.
{“response”: <ERROR>} is returned as a Response if unsuccessful.

Produces

application/json

Errors

e “NoSuchJobID”: JobID is incorrect or does not exist

e ‘“SchedulerException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException®: is a generic error however

with respect to this API it would mean “Failed to execute the
API”

To retrieve the details about all jobIDs, /getAllJobIDDetails is used. This APl is
similar to the previous one.

API /getAllJobIDDetails

Description | This APl is used to get the details of all the jobIDs.

Method GET

Input HeaderParam: String iPlanetDirectoryPro

Output {“JobsScheduled”: [{“jobID”: <JobID1>, “Group”: <GroupID>,
“startTIme”: <startTime>, “stopTime”: <stopTime>,
“periodicity”: <periodicity>, “status”: <status>}..]} is
returned as a Response if successful. Here the groupID is the FISMOID
and the status is a job status from the list [BLOCKED, COMPLETE,
ERROR, NONE, NORMAL, PAUSED]. {“response”: “No Jobs
Scheduled”} is also returned if there is no Jobs data. {“response”:
<ERROR>} is returned as a Response if unsuccessful.

Produces | application/json

Errors e ‘“SchedulerException”: is a generic error returned by the

Quartz scheduler.

Copyright © 2017 FIESTA-loT Consortium 56

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”

Further, to get all the jobIDs for all the scheduled FISMOs use /getJobID

API /getJobIDs
Description | To API is used to get all the existing joblDs.
Method GET
Input HeaderParam: String iPlanetDirectoryPro
Output {“jobIDs”: [{“jobID”: <JobID1>, “FISMOID”: <FISMOID>}..]}
is returned as a Response if successful. Here the JobID is the job ID
of the scheduled FISMOID. {“response”: “No Jobs Scheduled”}
is also returned if there is no Jobs data. {“response”: <ERROR>} is
returned as a Response if unsuccessful.
Produces | application/json
Errors e “SchedulerException”: is a generic error returned by the
Quartz scheduler.
e “ImplementationException®: is a generic error however
with respect to this API it would mean “Failed to execute the API”

The /stopJobExecution stops the job that was already started using the previous
defined start APIs. This API takes as an input the JobID and stops the job by deleting
it from the scheduler.

API /stopJobExecution

Description | The APl is used to pause the execution of a particular job

Method POST

Input HeaderParam: String jobID
HeaderParam: String iPlanetDirectoryPro

Output {“response”: “Job paused successfully”} is returned as a
Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.

Produces | application/json

Copyright © 2017 FIESTA-IoT Consortium

57

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Errors e “NoSuchJobID”: JobID is incorrect or does not exist

e “SchedulerException”: is a generic error returned by the
Quartz scheduler

e “ImplementationException®: is a generic error however

with respect to this API it would mean “Failed to execute the
API”

If a job is paused, it can also be resumed. To resume a job /resumeJobExecution is
used.

API /resumeJobExecution
Description | To APl is used to resume the execution of a particular job
Method POST
Input HeaderParam: String jobID
HeaderParam: String iPlanetDirectoryPro
Output {“response”: “Job resumed successfully”} is returned as a
Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.
Produces | application/json
Errors e “NoSuchJobID”: JobID is incorrect or does not exist
e “SchedulerException®: is a generic error returned by the
Quartz scheduler
e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”

The EEE also provide APIs to reschedule, delete jobs and identify what are the
currently executing jobs. This is achieved using /rescheduleJob,
/deleteScheduledJob, /deleteAllScheduledJobs and
/getCurrentlyExecutingJlobs

API /reschedulelob
Description | This API is used to change the schedule of an already scheduled Job.
Method POST

Copyright © 2017 FIESTA-IoT Consortium

58

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Input HeaderParam: String jobID
HeaderParam: String iPlanetDirectoryPro
HeaderParam: String timeSchedulePayload
The timeSchedulePayload is a JSON string that should contain
startTime, stopTime and periodicity. A sample of such JSON is
{"startTime":"2016-09-15T13:57:00.0Z", “stopTime":"2016-
09-15T716:30:00.0Z2","periodicity":60}. Here startTime and
stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z”) and
the periodicity is in seconds.

Output {“response”: “Job rescheduled successfully”} is returned as a
Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.

Produces | application/json

Errors e “NoSuchJobID”: JobID is incorrect or does not exist

e ‘“SchedulerException”: is a generic error returned by the
Quartz scheduler
e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”

API /deleteScheduledJob

Description | This APl is used to remove a particular scheduled job from the Scheduler

Method POST

Input HeaderParam: String jobID
HeaderParam: String iPlanetDirectoryPro

Output {“response”: “Job deleted successfully”} is returned as a
Response if successful. {“response”: “No Job found”} could also
be returned. {“response”: <ERROR>} is returned as a Response if
unsuccessful.

Produces | application/json

Errors e “NoSuchJobID”: JobID is incorrect or does not exist

e “SchedulerException®: is a generic error returned by the
Quartz scheduler

e “PersistenceException”: is a generic error returned by the
Quartz scheduler.

Copyright © 2017 FIESTA-IoT Consortium

59

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”

API /deleteAllScheduledJob
Description | This API is used to remove all scheduled job from the Scheduler. This
APl will be protected and will be only available to the FIESTA-loT
administrators.
Method POST
Input HeaderParam: String iPlanetDirectoryPro
Output {“response”: “All Job deleted successfully”} is returned as a
Response if successful. {“response”: “No Jobs found”} could also
be returned. {“response”: <ERROR>} is returned as a Response if
unsuccessful.
Produces | application/json
Errors e “SchedulerException”:is a generic error returned by the Quartz
scheduler
e ‘“PersistenceException”: is a generic error returned by the
Quartz scheduler.
e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”
API /getCurrentlyExecutingJobs
Description | This API is used to get all the jobs that are currently being processed.
Note that this is different from listing all jobs that are available in the
persistence store of the scheduler.
Method GET
Input HeaderParam: String iPlanetDirectoryPro
Output {“response”: “Currently Executing Jobs.”, “Jobs”:
[<jobs>..]} is returned if successful. {“response”: <ERROR>} is
returned as a Response if unsuccessful.
Produces | application/json
Errors e “SchedulerException”:is a generic error returned by the Quartz

scheduler

Copyright © 2017 FIESTA-IoT Consortium

60

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”

To support ERM and provide single point of delete and update, EEE provides a set of
triggers that should be used by the ERM to notify EEE whenever an experimenter
deletes, reschedules or update a FISMO. Within this scenario, the APIs are

/£fISMOUpdateTrigger,

/deleteFismoJobTrigger,

/deletefismoJobTriggerlist and /deleteScheduledJobsOfFISMO

API /fISMOUpdateTrigger
Description | This APl is used to update a particular FISMO if it is already scheduled
on the EEE.
Method POST
Input Body: FISMO fismo
Output {“response”: “Job rescheduled successfully”} is returned as
a Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.
Produces | application/json
Errors e The FISMO object is null
e “SchedulerException”: is a generic error returned by the
Quartz scheduler
e “ImplementationException”: is a generic error however
with respect to this API it would mean “Failed to execute the
API”
API /deleteFismoJobTrigger
Description | This API is used to delete a particular FISMO if it is already scheduled
on the EEE.
Method POST
Input HeaderParam: String fismoID
Output {“response”: “Job deleted successfully”} is returned as a
Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.

Copyright © 2017 FIESTA-loT Consortium 61

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Produces

application/json

Errors

e “SchedulerException®: is a generic error returned by the
Quartz scheduler

e ‘“PersistenceException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException®: is a generic error however
with respect to this API it would mean “Failed to execute the
API”

API

/deletefismoJobTriggerlist

Description

This APl is used to delete list of FISMOs if it is already scheduled on
the EEE.

Method

POST

Input

Body: String fismoIDs
In JSONArray format

Output

{“response”: “FISMOs deleted successfully”}isreturned as a
Response if successful. {“response”: <ERROR>} is returned as a
Response if unsuccessful.

Produces

application/json

Errors

e No FISMOs Specified.

e ‘“SchedulerException”: is a generic error returned by the
Quartz scheduler

e “PersistenceException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException”: is a generic error however

with respect to this API it would mean “Failed to execute the
API”

API

/deleteScheduledJobsOfFISMO

Description

This APl is used to delete jobs associated to a particular FISMO.

Method

POST

Input

HeaderParam: String fismolDs

HeaderParam: String iPlanetDirectoryPro

Copyright © 2017 FIESTA-loT Consortium 62

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

{“response”: “All jobs associated to Fismo are deleted”}

Output
P is returned as a Response if successful. {“response”: <ERROR>}
is returned as a Response if unsuccessful.
Produces application/json
Errors e “SchedulerException”: is a generic error returned by the

Quartz scheduler

e “PersistenceException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException”: is a generic error however with
respect to this API it would mean “Failed to execute the API”

6.1.2 Subscription APIs

The subscription services (/subscribeToFISMOReport and
/unsubscribeToFISMOReport to the discoverable FISMOs) are used so that an
experimenter can subscribe to existing discoverable FISMOs or unsubscribe from
already subscribed FISMO. The following subscription based services can be invoked
using a path https://<HOST>:<PORT>/schedulerServices/subscription/<API>

API /subscribeToFISMOReport
Description | This API is used to subscribe to a particular FISMO’s report
Method POST
Input HeaderParam: String fismoID
HeaderParam: String userID
HeaderParam: String femoID
HeaderParam: String iPlanetDirectoryPro
HeaderParam: String experimentOutput
Here the experimentOutput is the ExperimentOutput attribute of the
FISMO in the JSON ({“url”: <url>}). A sample of currently valid
experimentOutput is {"url":"http://myExperiment.com"}.
Further, the userID is the ID of the experimenter, and the femoID is
the ID of the experiment to which subscription is to be associated to.
Output {“response”: “subscribed”, “FISMOID”: <FIMSOID>, “JobID”:

<JobID>} is returned as a Response if successful. {“response”:
<ERROR>} is returned as a Response if unsuccessful.

Copyright © 2017 FIESTA-loT Consortium 63

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Produces | application/json
Errors e “NoSuchServiceModelObjectID”: FISMOID is incorrect or
does not exist
e “NoSuchUserID”: userID is incorrect or does not exist
e “NoSuchExperimentID”: FEMOID is incorrect or does not exist
e “AlreadySubscribed”: FISMOID is already subscribed and
associated to the userID.
e “InvalidURL”:invalid url
e “InvalidExperimentOutputJson”: invalid Experiment
Output Json
e “ImplementationException”:is a generic error however with
respect to this API it would mean “Failed to execute the API or
subscription failed”

API /unsubscribeToFISMOReport

Description | This API is used to unsubscribe from a particular FISMO’s report

Method POST

Input Header Param: String fismoID
HeaderParam: String iPlanetDirectoryPro
Header Param: String femolID
femoID is ID of the experiment to which subscription is to be associated
to.

Output {“response”: “Unsubscribed”} is returned as a Response if
successful. {“response”: <ERROR>} is returned as a Response if
unsuccessful.

Produces | application/json

Errors e “NoSuchServiceModelObjectID”: FISMOID is incorrect or

does not exist

e “NoSuchUserID”: userID is incorrect or does not exist

e “NoSuchExperimentID”: FEMOID is incorrect or does not exist

e “SubscriptionNotFound”: FISMOID is not associated to the
userID.

e “ImplementationException”:is a generic error however with
respect to this API it would mean “Failed to execute the API or
un-subscription failed”

Copyright © 2017 FIESTA-loT Consortium 64

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

6.1.3 Polling APIs

A polling service is a service using which an experimenter can run the FISMO once
without actually scheduling it. The following polling based services can be invoked
using a path https://<HOST>:<PORT>/schedulerServices/polling/<API>

API /pollForReport
Description | This APl is used to invoke a previously defined FISMO. A call to this
APl will only produce one Resultset that will be sent to the URL
specified in the ExperimentOutput parameter.
Method POST
Input HeaderParam: String fismoID
HeaderParam: String femolID
HeaderParam: String iPlanetDirectoryPro
QueryParam: Boolean owner (default value true). This
parameter basically tells the EEE if it has to look into subscriber realm
or the owner realm
Output {“response”: “Polled Successfully”: “jobID”: <JOBID>} is
returned as a Response if successful. Here JoblID is the joblD of the
generated for the particular poll. Experimenters are advised to keep
this jobID in their record. {“response”: <ERROR>} is returned as a
Response if unsuccessful.
Produces | application/json
Errors e Something went wrong
e FIESTA-IoT Analytics tool was not invoked correctly.
Thus polling failed.
e “NoSuchServiceModelObjectID”: FISMOID is incorrect or
does not exist
e “NoSuchExperimentID”: FEMOID is incorrect or does not exist
e “InvalidURL”:invalid url
e “InvalidExperimentOutputJson”: invalid Experiment
Output Json
e “ImplementationException®:is a generic error however with
respect to this API it would mean “Failed to execute the API”
API /dynamicPollForReport
Description | This APl is used to invoke a previously defined FISMO. A call to this API
will only produce one Resultset that will be sent to the URL specified in

Copyright © 2017 FIESTA-loT Consortium 65

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

the ExperimentOutput parameter. However, this APl is different from
previous APl with respect to the possibility of providing parameter
values. This is useful in the case of mobile applications.

Method

POST

Input

HeaderParam: String fismoID

HeaderParam: String femolID

HeaderParam: String iPlanetDirectoryPro
QueryParam: Boolean owner (default value true)
QueryParam: String geolLatitude (default value “0”)
QueryParam: String geolLongitude (default value “0”)
QueryParam: int intervalNowToPast (default value 9)
QueryParam: Long fromTime (default value “oL”)
QueryParam: Long toTime (default value “oOL”)

Body: String Others

This is a JSON object represented as a string. The default value is “{}”.
However, experimenters need to set the key value pair depending on the
query. A JSON object the experimenters need to set is

{
"KATInput": {"Method": [""], "Parameters":[""]},
"otherParameters": {<key>:<value>}

}

Here, KATInput essentially reflects the input needed for the FIESTA-lIOT
Analytics Toolkit, while otherParameters reflect the dynamic attributes

Output

{“response”: ‘“Dynamically Polled Successfully”: “jobID”:
<JOBID>} is returned as a Response if successful. Here JoblID is the
joblID of the generated for the particular poll. Experimenters are advised
to keep this jobID in their record. {“response”: <ERROR>} is returned
as a Response if unsuccessful.

Produces

application/json

Errors

e Something went wrong

e FIESTA-IoT Analytics tool was not invoked correctly.
Thus, polling failed.

e “NoSuchServiceModelObjectID”: FISMOID isincorrect or does
not exist

e “NoSuchExperimentID”: FEMOID is incorrect or does not exist

e “JSONException”:invalid JSON

e “QueryException”: invalid query and Parameters

Copyright © 2017 FIESTA-loT Consortium 66

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

e “InvalidExperimentOutputJson”: invalid Experiment
Output Json

e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”

6.2 Experiment Management Services

In this section, we list the experiment management APIs that are provided by the EEE
and the testbed status Monitoring services.

6.2.1 EEE Monitor APIs

Here we list all the APIs that provide “meta” information about an experiment and the
associated services (FISMOs). The following monitoring based services can be

invoked

using a path

https://<HOST>:<PORT>/schedulerServices/monitoring/<API>

API /getJobIDStatus
Description | This API is used to get the status of a particular joblD, i.e., one from the
list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]
Method GET
Input QueryParam: String jobID
HeaderParam: String iPlanetDirectoryPro
Output {“JobID”: <JobID>, “status”: <STATUS>} is returned as a
Response if successful. Here STATUS is one from the list as described
above. Other messages that are returned are {“response”: “Job not
Scheduled”} {“response”: <ERROR>} is returned as a Response if
unsuccessful.
Produces | application/json
Errors e “NoSuchJobID”: JobID is incorrect or does not exist
e “SchedulerException”: is a generic error returned by the
Quartz scheduler
e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”
API /getAllSubscribersOfFISMOID
Description | This APl is used to get a list of subscribers (or the experimenters) that

are using a particular FISMO.

Copyright © 2017 FIESTA-loT Consortium 67

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Method GET
Input QueryParam: String fismoID
HeaderParam: String iPlanetDirectoryPro
Output {“UserIDs”: [<UserIDl1l>, <UserID2>,..]} is returned as a
Response if successful. Here, the “UserIDs” is a list of userlDs that have
subscribed to the particular FISMO. It is also possible to get an empty
JSON object if there is no user that has subscribed to the given
FISMOID. {“response”: <ERROR>} is returned as a Response if
unsuccessful.
Produces | application/json
Errors e ‘“NoSuchServiceModelObjectID”: FISMOID is incorrect or does
not exist
e “ImplementationException”: is a generic error however with
respect to this API it would mean “Failed to execute the API”
API /getAllSubscriptionsOfExperimenter
Description | This API is used to get a list of user subscriptions irrespective of the
experiment
Method GET
Input HeaderParam: String iPlanetDirectoryPro
Output {“FISMOIDs”: [<FISMOID1>, < FISMOID2>,..]} is returned as a
Response if successful. Here, the “FISMOIDs” is a list of FISMOIDs that
the user has subscribed. It is also possible to get an empty JSON object
if there are no FISMOIDs that a user has subscribed. {“response”:
<ERROR>} is returned as a Response if unsuccessful.
Produces | application/json
Errors e “ImplementationException®: is a generic error however with
respect to this API it would mean “Failed to execute the API”
API /getMySubscriptionsforExperiment
Description | This API is used to get a list of user subscriptions with respect to a

particular experiment

Copyright © 2017 FIESTA-IoT Consortium

68

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Method

GET

Input

HeaderParam: String iPlanetDirectoryPro

QueryParam: String femoID

Output

{“Subscriptions®: [{*“jobID”: <jobID>, “fismoID”:
<FISMOID1>},..]} is returned as a Response if successful. Here, the
“Subscriptions” is a list of joblDs and FISMOIDs that the user has
subscribed. It is also possible to get an empty JSON object if there are
no subscriptions for a particular experiment by the user. {“response”:
<ERROR>} is returned as a Response if unsuccessful.

Produces

application/json

Errors

e “NoSuchUserID”: userID is incorrect or does not exist

e “NoSuchExperimentID”: FEMOID is incorrect or does not exist

e “ImplementationException”: is a generic error however with
respect to this API it would mean “Failed to execute the API or
Subscription Failed”

API

/getJobExecutionLog

Description

This APl is used to get the ExecutionLog of a Job. The return is a JSON
array with “executionTime” and “dataConsumed” information. Here
executionTime is the time it took to successfully execute the Job.

Method

GET

Input

QueryParam: String jobID

HeaderParam: String iPlanetDirectoryPro

Output

{“ExecutionLog”: [{“executionTime”: <timel>,
“dataConsumed”: <dataConsumedl>}, {“executionTime”:
<time2>, “dataConsumed”: <dataConsumed2>},..]} is returned as
a Response if successful. Here, the “ExecutionLog” is a log of
successful executions of jobID. It is also possible to get an empty JSON
object if there is no ExecutionLog for the joblD. {“response”:
<ERROR>} is returned as a Response if unsuccessful.

Produces

application/json

Errors

e “NoSuchJobID”: JobID is incorrect or does not exist
e “ImplementationException”: is a generic error however with
respect to this API it would mean “Failed to execute the API”

Copyright © 2017 FIESTA-IoT Consortium

69

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

6.2.2 EEE Accounting APIs

Here we list all the APIs that provide counting of the number of times experiments
associated to an experimenter have been executed and the number of times a
particular experiment service (FISMOs) has been executed. The following accounting
based services can be invoked using a path
https://<HOST>:<PORT>/schedulerServices/accounting/<API>

API /getUserExecutionCount

Description | This APl is used to get the number of times a particular user has
executed experiments

Method GET

Input HeaderParam: String iPlanetDirectoryPro
QueryParam: String fromTime
QueryParam: String toTime (default)

The fromTime is a string that should be in the format YYYY-MM-
DD’T’HH:mm:ss.SSS’Z°. A sample fromTime is “2016-09-
15T13:57:00.0Z”. In case toTime is not provided, UTC now will be
used.

Output {“count”: <count>} is returned as a Response if successful. Here,
the “count” is the number of times a user has executed experiments.
Note that the count can also be 0. {“response”: <ERROR>} is
returned as a Response if unsuccessful.

Produces | application/json

Errors e “UnParsableDate”: fromTime is not in the correct format and
thus cannot be parsed in the required format.

e “PersistenceException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException”:is a generic error however with
respect to this API it would mean “Failed to execute the API”

API /getJobExecutionCount

Description | This API is used to get the number of times a particular job was
executed.

Method GET

Copyright © 2017 FIESTA-loT Consortium 70

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Input QueryParam: String jobID
HeaderParam: String iPlanetDirectoryPro

Output {“count”: <count>} is returned as a Response if successful. Here,
the “count” is the number of times the job is executed. Note that the
count can also be 0. {“response”: <ERROR>} is returned as a
Response if unsuccessful.

Produces | application/json

Errors e “NoSuchJobID”: JobID is incorrect or does not exist

e “PersistenceException”: is a generic error returned by the
Quartz scheduler.

e “ImplementationException”:is a generic error however with
respect to this API it would mean “Failed to execute the API”

6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs

Here we list all the APIs that provide experimenters info on the testbed status, monitor

a sensor

etc.

The following APIs can be invoked using a path

https://<HOST>:<PORT>/testbed-monitoring/api/<API>.

API /testbeds
Description | This API is used to get all testbeds that are known by the monitoring
tool.
Method GET
Input None
Output Returns the list of testbeds in the format:
{“<TESTBED_IRI>”: “<TESTBED NAME>”,..}
Here <TESTBED _IRI> is the identifier which is used in the lot-Registry.
Produces application/json
Errors e None
API /testbeds/activated
Description | This APl is used to get all testbeds that are activated.

Copyright © 2017 FIESTA-loT Consortium 71

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Method GET
Input None
Output Returns the list of all activated testbeds in the same format as in
/testbeds.
Produces application/json
Errors e None
API /testbeds/<string:testbed_name>
Description | This APl is used to get all known information about specific testbed.
Method GET
Input URLParam: String : The TESTBED _IRI or the INTERNAL_ID of the
wanted testbed
Output Returns the testbed information in the following format:
{
"activated": <activated>,
"location": {
"latitude": <latitude>,
"longitude": <longitude>
s
"testbed_name": <TESTBED_NAME>,
"sensors": {
"active": <active_sensors>,
"relative"”: <relative_sensors>,
"total": <total_sensors>
s
" id": <INTERNAL_ID>,
"testbed_iri": <TESTBED_IRI>
}
Produces application/json
Errors e {"error_msg": "No testbed found for
<TESTBED_IRI>", "error": true}

Copyright © 2017 FIESTA-loT Consortium 72

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

API

/testbeds/<string:testbed_name>/sensors

Description

This APl is used to get all known sensors from a specific testbed.

Method

GET

Input

URLParam: String - The TESTBED _IRI or the INTERNAL_ID of the
wanted testbed

QueryParam: String sensor-type — The list can be filter by the type of
sensor (e.g.: m3-lite:HumiditySensor)

QueryParam: String unit — The list can be filter by the measured unit of
sensor (e.g.: m3-lite:Percent)

QueryParam: String quantity-kind — The list can be filter by the
measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity)

Output

Returns the list of all sensors in the following format:

[

{
"sensor_name": <SENSOR_NAME>,

"longitude": <longitude>,
"latitude": <latitude>,
"sensor_type": <sensor_type>,
"unit": <unit>,
"deployment": <deployment>, # The ID of the testbed
this sensor is deployed on
"quantity _kind": <quantity_kind>,
"newest_value": {
"color": <color>,
"value": <value>
¥
"newest_date": {
"color": <color>,
"value": <value>
s
" id": <INTERNAL_ID>
s
{...},

]

Produces

application/json

Errors

e {"error_msg": "No testbed found for
<TESTBED_IRI>", "error": true}

Copyright © 2017 FIESTA-loT Consortium 73

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

API /sensors

Description | This APl is used to get all known sensors from all testbeds.

Method GET

Input QueryParam: String sensor-type — The list can be filter by the type of
sensor (e.g.: m3-lite:HumiditySensor)
QueryParam: String unit — The list can be filter by the measured unit
of sensor (e.g.: m3-lite:Percent)
QueryParam: String quantity-kind — The list can be filter by the
measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity)

Output Returns the list of all sensors in the same format as in
/testbeds/<string:testbed_name>/sensors

Produces application/json

Errors None

API /sensors/<string:sensor_name>

Description | This APl is used to get all information about one specific sensor.

Method GET

Input URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the
wanted sensor

Output Returns the sensor information in the following format:

{
"sensor_name": <SENSOR_NAME>,

"longitude": <longitude>,
"latitude": <latitude>,
"sensor_type": <sensor_type>,
"unit": <unit>,
"deployment": <deployment>, # The INTERNAL_ID of the
testbed this sensor is deployed on

"quantity kind": <quantity_kind>,
"newest_value": {

"color": <color>,

"value": <value>
}s
"newest_date": {

"color": <color>,

"value": <value>

Copyright © 2017 FIESTA-loT Consortium 74

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

}s
" id": <INTERNAL_ID>
}
Produces application/json
Errors e {"error_msg": "No sensor found for <SENSOR_NAME>",
"error": true}
API /sensors/<string:sensor_name>/observations
Description | This APl is used to get all observations for one specific sensor.
Method GET
Input URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the
wanted sensor
Output Returns the list of observations for this sensor in the following format:
[
{
"time value": <ISO TIME>,
"data_value": <VALUE>
¥
{ooeds
]
Produces application/json
Errors e {"error_msg": "No sensor found for <SENSOR_NAME>",
"error": true}
API /testbeds/<string:testbed_iri>/activate
Description | This API is used to activate a testbed in the monitoring tool. All testbeds
will be monitored but only activated testbeds will be shown in the GUI.
Only FIESTA-IoT admins are permitted to activate and deactivate
testbeds.
Method GET
Input URLParam: String : The TESTBED _IRI or the INTERNAL_ID of the

wanted testbed

Copyright © 2017 FIESTA-loT Consortium 75

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Output Returns the activated testbed in the same format as in
/testbeds/<string:testbed_iri>
Produces application/json
Errors e {"error_msg": "Error while activating testbed
<TESTBED_IRI>. Testbed could not be found.", "error":
true}
API /testbeds/<string:testbed_iri>/deactivate
Description | This APl is used to deactivate a testbed in the monitoring tool.
Method GET
Input URLParam: String: The TESTBED_IRI or the INTERNAL_ID of the
wanted testbed
Output Returns the deactivated testbed in the same format as in
/testbeds/<string:testbed_iri>
Produces application/json
Errors e {"error_msg": "Error while deactivating testbed

<TESTBED_IRI>. Testbed could not be found.",
"error": true}

6.3 Experiment ResultSet Storage APIs

Here we list all the APIs that provide ERS functionalities. The following APIs can be
invoked using a path https://<HOST>:<PORT>/experiment-result-store

API /experiment-result-store

Description | This interface allows experiment results to be stored in persistence
until it is retrieved by the experimenter. Results must be stringified and
encapsulated in a JSON object.

Method POST

Input HeaderParam: String userID, Username of the client

HeaderParam: String femoID
HeaderParam: String jobID: optional, jobID of the FISMO in the EEE

Copyright © 2017 FIESTA-loT Consortium 76

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Output

204 OK

Produces

application/json

Errors

400 Bad Request

API

/experiment-result-store

Description

All result sets that cannot be sent to the experimenters are stored in
the Experiment Result Storage (ERS). ERS stores result set as is and
returns them when service is invoked. Upon a success, the particular
result set is deleted from the store.

Experimenters need to use an ERS API to download the needed data.
This API has a signature

Method

GET

Input

HeaderParam: String iPlanetDirectoryPro
HeaderParam: String femoID
HeaderParam: String jobID: optional, JobID of the FISMO in the EEE

If both FEMOID and JoblID are provided, then the corresponding
FISMO results are returned.

If only the FEMOID is provided, then all FISMO execution results
under that particular FEMO along with its corresponding job IDs are
returned.

Output

On successful response following provided template is returned

{ "femoResults": [
{ "jobid": "<JOBID>",
"results": [
{ "time": "<TIMESTAMP>",
"result": "<RESULTSET>"

1}

{“response”: <ERROR>} is returned as a Response if unsuccessful

Produces

application/json

Errors

400 Bad Request
401 Unauthorized

Copyright © 2017 FIESTA-loT Consortium 77

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

6.4 Documentation of APIs

The EEE API documentation was built using Swagger and is available to the
Experimenters for testing and understanding. The EEE APIs are divided into 2
categories: one for the experimenters and another for the FIESTA-IoT Admins. For
security purposed we just release the link! for the APIs that are made public to the
experimenters. The public version of the APIs for other components like FAT? and
ERS?3 is available in Markdown. Please note that for some tools like the monitoring tool,
the APl documentation is still under implementation phase. It will soon be added to the
portal.

" https://platform.fiesta-iot.eu/EEEapidocs/
2 FAT API - https://gist.github.com/UniSurreyloT/521a1927681ff0727ab1d2a1d89e1b0c
3 ERS API - https://gist.github.com/UniSurreyloT/c5fb321fd2c0b519cd3ef5f6793d7ffd

Copyright © 2017 FIESTA-loT Consortium 78

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

7 PROTOTYPE
7.1 PORTAL

The FIESTA-IoT project has developed a portal to be used by all the users of the
platform as a one-stop shop for all activities. This web-portal has been re-designed in
order to improve both the user experience and the look and feel. The current version
of the portal is based on bootstrapping CSS and html5 and provides a simple but user-
friendly interface. The welcome page of the portal is shown in Figure 33. As it can be
seen, the simple interface provides a left vertical menu, leaving the rest of the page
free for the actual content.

2

FIESTA loT

Welcome to the platform portal of FIESTA-loT
What is FIESTA-IoT ?

FIESTA-l0T is project that provides a Blueprint Experimental Infrastructure for Heterogeneous loT Technologies. FIESTA-loT
provides tools, techniques, processes and best practices enabling 10T testbed/platforms operators to interconnect their facilities
in an interoperable way based upon cutting edge semantics-based solutions.

& S FIESTA-loT
w!

o ¢ 3 : ww.fiesta-iot.eu

& Experimenter

=
@ Help

Create Ticket
Testbeds & Experiments

The FIESTA-IoT platform federates 10 loT testbeds providing access to a wealth of heterogeneous loT data, These ten testbeds are
geographically distributed, and have distinct data offerings that can be combined to develop innovative loT experiments.

Figure 33: Portal welcome page
7.1.1 Signing in

The FIESTA-IoT portal is not accessible publicly and only registered and accredited
users have access. In order to login to the portal, the users should access the page:
https://platform.fiesta-iot.eu that will redirect automatically to the login page of the
OpenAM [10], as shown in Figure 34.

After using the correct credentials, the users are redirected to https://platform.fiesta-
iot.eu/portalui that displays the initial web page of the portal, as shown in Figure 33.

Copyright © 2017 FIESTA-loT Consortium 79

https://platform.fiesta-iot.eu/
https://platform.fiesta-iot.eu/portalui
https://platform.fiesta-iot.eu/portalui

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

o]}

“FIESTA-l0T

www.fiesta-iot.eu

2

)
[J

)

. l J

SIGN IN TO FIESTA-IOT

[] Remember my username

LOG IN

Forgot Username? Forgot Password?

Figure 34: Portal login page
7.1.2 Menus

The portal provides five different menu categories:

e Home: this is the initially displayed menu, which includes some generic
interest pages that are accessible by all users that are registered to the portal.
This category includes the following pages:

o Welcome: this displays the initial welcome page with general
information about the FIESTA-loT project.

o Guide: this page shows some basic information with links to the
FIESTA-loT Moodle pages for the complete guides for experimenters
and testbed providers.

o Contact us: this page includes information for contacting the support
team or the project management team.

o Statistics: this page includes some sample statistics about the usage
of the FIESTA-IoT platform. It includes two tables, with (i) mapping of
experiments per testbed and (ii) mapping of testbeds per domain. It
also includes two graphs with statistics for the reasoning tool and the
number of registered devices per quantity kind. This page is shown in
Figure 35.

e Experimenter: this is the main menu category for experimenters to create, edit
and manage their experiments using the developed user interfaces. This
menu includes the following web pages:

Copyright © 2017 FIESTA-loT Consortium 80

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Experiment editor: this is the tool for creating and editing experiments
(see Section 5.3.1 for more details).

Experiment Register Client: this is the tool for uploading and registering
experiments via a FEDSPEC file.

Management console: this is the tool for managing, scheduling and
running experiments (see Section 5.3.2 for more details).

e Testbed provider: this is the main menu category used by testbed providers for
registering their testbed, the resources and configuring them. It includes the
following pages:

O

Register testbed: this page displays the tool for the online registration of
a new testbed.

Register resources: this page displays the tool for the online registration
of new devices for the selected testbed in various ways (by text, by
upload or manually).

TPI configurator: this page includes the tool for configuring the testbed
provider interface.

e Tools: this menu category includes additional tools that can be used by
experimenters (and/or testbed providers), with extra functionalities that are
useful but are not mandatory. These functionalities are:

O

o

Testbed monitoring: this page displays the tool for monitoring the status
of the testbeds (for more information see Section 5.3.5).

Certification [14]: this link redirects the testbed user to the certification
portal of the FIESTA-IOT project, where the testbed providers can get
validation for the standardised way their testbeds are integrated in the
platform.

Reasoning: this is another menu category to be used by experimenters
for creating, registering and running rules that can be helpful for their
experiments (see Section 5.3.3 for more details).

e Demo: this menu category includes sample experiment demos that show the
full functionality of the FIESTA-IoT platform.
¢ Help: this menu category provides several helping pages:

@)
©)
©)

About FIESTA-IoT: this is a link to the web-page of the project.
Support: this is a link to the support page of the website of the project.
Documentation: this is a list of web pages providing the documentation
of all tools and functionalities developed by the FIESTA-IoT project.
Social Media Resources: this provides links to the youtube channel,
and the twitter and slideshare accounts of the FIESTA-IoT project.

o Create Ticket: this link provides a quick access tool for the users in order to
create tickets for asking help by the FIESTA-loT team or for submitting issues
and problems.

Copyright © 2017 FIESTA-loT Consortium 81

ts—V2

men

ing loT Experi

d Manag

ing an

Infrastructure for Submitti

Deliverable 4.8

JosuagzonN
Josuagiesyyaa)y
Josuegpy
Euus_.ﬁm_mr_m
JEmaowey)

Josuagpunog
Josuagiyfn
dosuagypiwny
Josuagisng

‘Wireless Networks

2017-11-17

Josuagasugsig
{0sUagpaadg
Josuagpunog
Josuagiywieoly
JE8 Wols | aamy

data centers

._Eumumnmu_._mmuﬁ:m_t::
deawo ey
osuagiypiuny
Josuagiybiy

2017-11-06

home automation _ agricuture

._Eumumnmu_._mmuﬁm_ufm\,
d0sUagzOn
JeapBiaug
0sUasfp|wny)og
JosuagiyBian
Em:quEEuiw
._n_m:qu:aUm,u_:m)
RECITLTIEI
Jasuagajuosenn

3
£
£
H

Josuagieapaa)y
osuBgILEIn|ngsnoeses
AEB WO Way | ipy

2017-09-19

Josuagpunog

crowd-sourcing.

Eﬁﬂmﬂmu:mmmﬁ:mE:I
lanajany
Em_._mw}_E_xEn_
Josuagiyfly
Em_._mw_ummn_mn:_g
Josuagunnas)| gpuyy
Josuagunnelpeye|og
Josuaguaney [T

Em_._mwm_::uﬁu:u:n_muEE

‘smart buildings

2017-09-15

2017-09-27

S}
.m) y Jasuagipiwny
g : £ #0010
i 3 2 d0suagpaad,
: 3 2 Spasdg
: < & Josua al.
] M c ; SPi8l4aiae g
4 g o J@j@wo
| 2 :
: ; ! 8 Josuagadoasous
- c c o o 2 5 o o 5 & o o
m T " R IR I/ EH

@) o~ - o v B oF ¥ M om oNoA e
5] @ m
o = b

T
o
£
7
w
i

82

ics page

loT Consortium

Portal statist

Copyright © 2017 FIESTA-

Figure 35

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

7.1.2.1Access control / Roles for Menu

For the FIESTA-IoT portal there are four main access role categories:

e Registered users
e Experimenters

e Testbed providers
e Administrators

The portal has been designed to provide different access to the menus and the web
pages according to the role of the user. Access is controlled by the usage of a JSON
file, with roles, URLs, targets, CSS icon styles, etc. Based on the current logged on
user, the data are filtered in the JSON file to disable/enable menu on the portal. Table
11 shows a mapping of the portal menus to the user roles.

Table 11: Access roles per portal menu

Menu Category Registered | Experimenter | Testbed | Administrator
user provider
Home X X X X
Experimenter X X
Testbed Provider X X
Tools X X X
Demo X X X X
Help X X X X
Create Ticket X X X X

An example for the controlling of the access to the Testbed provider menu is given
below, showing that only the administrator and the testbed provider are allowed
access:

{ 1] 1]

"name" :"Testbed Provider",
"roles":["fiestaAdmin", "testbedAdmin"],
"cssClass":"fa fa-snowflake-o",
"submenus": [
{
"name" :"Register Testbed",
"url":"https://platform.fiesta-iot.eu/ui.testbed-
registry/#/register-testbeds"”,
"roles":["fiestaAdmin", "testbedAdmin"],
"cssClass":"fa fa-circle-o"

),
{ " "

"name" :"Register Resources"”,

Copyright © 2017 FIESTA-loT Consortium 83

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

"url":"https://platform.fiesta-iot.eu/ui.testbed-

registry/#/register-devices",
"roles":["fiestaAdmin","testbedAdmin"],
"cssClass":"fa fa-circle-o"

),
{ 1] L1

"name" :"TPI Configurator",

"url":"https://platform.fiesta-
iot.eu/tpi.configurator/index.zul",

"roles":["fiestaAdmin","testbedAdmin"],

"cssClass":"fa fa-circle-o"

}

]
}

7.2 Usage
7.2.1.1Testbeds

The tools for registering a Testbed, registering resources and managing the testbed
interface have been provided in the rest of WP3 and WP4 Deliverables (especially [15],
[16]) so will not be described again here to avoid repetition.

7.2.1.2 Experimenters
7.2.1.2.1 Create an Experiment

FIESTA-IoT provides a web tool to create and edit experiments called Experiment
Editor. There are a couple of ways to create experiment using the Experiment Editor:
one is to create a new experiment, another is to duplicate an existing experiment
option.

To create a new experiment using the Experiment Editor we have to click on the add
icon on the rectangular block, as shown in Figure 7, which would then redirect us to
the new experiment template. This template can be divided in to three blocks: FEMO,
FISMOs and Query. Note that the experiment editor follows the defined FIESTA-loT
experiment DSL.

Copyright © 2017 FIESTA-loT Consortium 84

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

[8 PREVIEW H SAVE]

| BACK

FEMO FISMOs + Query

FEMO Name:
New FEMO
FEMO Description:

New FEMO

Domain of interfest:

Figure 36: Experiment Template FEMO

The FEMO block contains three fields FEMO Name, FEMO Description and Domain
of Interest as shown in the Figure 36. For details on the FEMO we refer the readers to
[12].

A FEMO should have at least one FISMO that is created from the initial template. An
experimenter can add multiple FISMOs depending on the experiment requirements by
clicking the add icon in the FISMO block. Each created FISMOs are listed in align with
the FISMO block and every FISMO comes with two immediate options next to its name,
Duplicate FISMO operation and Delete FISMO operation. Duplicating a FISMO would
create a new FISMO with the same parameters as the existing FISMO, while clicking
on the delete icon would remove that particular FISMO form the FEMO. Note that the
changes will not take place unless the save button is clicked.

& BACK [@ PREVIEW H SAVE]
FEMO FISMOs + Query
New FEMO fismo o) queryControl

New FISMO

New FISMO

FISMO Name:

ismo
FISMO Description:

1%
a

top time & Periodi city

LLLLLLLL

Figure 37: Experiment template FISMO

Copyright © 2017 FIESTA-loT Consortium 85

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

A FISMO template consists of seven fields, FISMO Name, FISMO Description,
Discoverable, Experiment Control, Experiment Output and Widget as shown in Figure
37. For details on the FISMO we refer the readers to [12].

Every FISMO contains a single Query. The query block contains Quantity Kind, Static
Location, Query Interval, and Dynamic Attributes as shown in the Figure 38. For details
on the Query Control we refer the readers to [12].

Quantity kind:
http://purl org/iot/vocab/m3-lite#PresenceStateDriverCard2
Static location:
Latitude | 442 Longitude | 55.1
Query interval:

Fromdate | 2017-10-31721:00:29

0
g
[
3
°

Dynamic Attributes:

Predefined Dynamic Atrribute Dynamic Attribute
Dynamic Geo Location: Name Default Value
Latitude +
Longitude

Dynamic Query Interval:

From date time

Todatetime

Interval now to past

Figure 38: Experiment Template Query

Using the duplicate option in the FEMO block at start of Experiment Editor will result in
creating a new experiment with all the FISMO and Queries in the existing experiment.

7.2.1.2.2 Register new Experiment

FIESTA-IoT is currently offering a simple interface in order to store, update and delete
experiments called Experiment Register Client. This Ul is used in case experiment was
using FEDSpec based execution and created the FEDSpec using proprietary tool other
than Experiment Editor. The Experiment Register Client can be found at the
Experimenter menu of the FIESTA-IoT portal (see Figure 39).

Copyright © 2017 FIESTA-loT Consortium 86

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FIESTA loT

Inria Paris
Online

@& Home

Welcome to the platform portal of FIESTA-loT
What is FIESTA-I0T ?

FIESTA-10T is project that provides a Blueprint Experimental Infrastructure for Heterogeneous loT Technologies. FIESTA-loT
provides tools, techniques, processes and best practices enabling |oT testbed/platforms operators to interconnect their facilities
in an interoperable way based upon cutting edge semantics-based solutions.

& Experimenter

i e .-'. FIESTA-loT
3 & www.fiesta-ioteu
o)
. o r
o% ® .o-""
p .

-
1)
e
.
.

.
[]
00000
LI

Create Ticket Testbeds & Experiments

The FIESTA-1oT platform federates 10 loT testbeds providing access to a wealth of heterogeneous loT data. These ten testbeds are
geographically distributed, and have distinct data offerings that can be combined to develop innovative loT experiments.

Figure 39: Portal Experimenter Menu

The Experiment Register Client provides the ability to store an experiment at the
FIESTA-IoT platform in the form of a FEDSpec. The defined FEDSpec could be as
simple as a single service (FISMO) or as complex as multiple experiments (FEMOs).
To upload a FEDSpec first one should identify the location of it by hitting the “Open
FEDSpec” (see Figure 40 below) and then by hitting the “Save FEDSpec” button. As
soon as the FEDSpec is saved the included FEMOS appears in the available
experiments list (FEMOS) as shown in Figure 40. When uploading a FEDSpec the
FEMO/FISMO IDs should be empty, as they will be automatically assigned by the
system.

Copyright © 2017 FIESTA-loT Consortium 87

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FEDSPEC 2 x

Experiment Register Client

Open FEDSPEC Save FEDSPEC

File Path:

— Export FEDSPEC
Export Femo

Delete All Femos

Figure 40: Experiment Register Client

By choosing a FEMO from the list, the User is capable to have a quick overview of it
as shown in Figure 41 below.

FEDSPEC X

Experiment Register Client

Cpen FEDSPEC Save FEDSPEC
File Path:
FEMOS Export FEDSPEG
@) MySecondExpariment Expart Fama

Detate All Fernos

Prfix x5d; It Maww w3 org2001XMLS: heman gt

Figure 41: Experiment Register Client - Experiment Browser

The tools provides also the ability to export a FEMO by hitting the “Export FEDSPEC”
button after choosing the FEMO of interest from the provided list. The FEDSpec that
will be exported will now contain the FEMO/FISMO IDs assigned from the FIESTA-IoT
platform. This will give the Experimenter the ability to update the exported

Copyright © 2017 FIESTA-loT Consortium 88

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

FEMO/FISMO by updating the XML file and saving it again to the Experiment
Repository following the same process described above.

7.2.1.2.3 Execute Experiment

An experiment can be executed in many ways and FIESTA-IoT provides solutions for
the execution of experiment for two categories of users (novice, advanced). Further,
for the advanced user case FIESTA-IoT provides 2 solutions: one based on APIs of
EEE and another one based on directly accessing loT-Registry APIs. Novice
experimenters are advised to use the method described in this section.

As said experiment execution is handled by a component called “Experiment execution
Engine” or EEE. This module uses and supports the experiment description written by
an experimenter in the DSL format specified by FIESTA-IoT (for reference on the DSL
refer to [12]). Amongst the available features in the DSL, in the current version, EEE
supports only a few. These include starting an experiment service (FISMO), pausing
a FISMO, restarting a FISMO, subscribing to already existing and discoverable
FISMOs, unsubscribing from subscribed FISMOs, and polling a FISMO (executing one
time a FISMO on the FIESTA-IoT platform). The EEE specific APIs are available* for
developers or experimenters for testing and more in-depth knowledge about specific
APIs. Note that in case an experimenter wants to use the EEE API they should still
upload the FEDSpec either using the ERM API [12] or the ERM Client. Nevertheless,
experimenters can also use Experiment Management Console and perform actions on
the FISMO. This option is to be used by novice experimenters.

In order to execute an experiment using Experiment Management Console that is
described by its FISMOs, the Experimenter first need to go to:

https://platform.fiesta-
iot.eu/experimentConsole/experimentConsole.jsp

You can also use the cookie version of the console by just using the link above. Upon
successful authentication, the list of experiments associated with the experimenter or
the user is retrieved as shown in Figure 10. Note that this is also available via portal.
The experimenter needs to go to the Experimenter Menu and click the “Experiment
Management Console”

From this view, experimenters can then select whichever experiment they want to work
on from the list using the “SELECT” button next to each experiment. Once a particular
experiment is selected, this would open another Ul (as shown from Figure 42 to Figure
44). The entire Ul is divided into 3 panes: Experiment Details, Associated FISMOs,
and Subscription Pane) where experiment name, experiment description, a list of
experiment Domain of Interest along with Associated FISMOs and available FISMOs
for subscription is shown.

An experimenter can choose to update the metadata of the experiment that he/she has
created using “EXPERIMENT EDITOR”. This will open the Ul provided in Section 5.3.1
where experimenter can resubmit their updated Experiments. Upon these

4 https://platform.fiesta-iot.eu/EEEapidocs/

Copyright © 2017 FIESTA-loT Consortium 89

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

resubmissions, a service in EEE is triggered that changes only the scheduling interval.
If the scheduling interval is not changed nothing is updated on the EEE.

The “Associated FISMOs” pane shows the “meta” information about the FISMOs that
are associated to a particular experiment. The “meta” information includes: if the
FISMO was Owned or Subscribed within the frame of an experiment, the status of the
FISMO (either NOT YET SCHEDULED, NORMAL, PAUSED, etc.), past execution history and
polling option. Once scheduled a “delete job” button will appear that will let
experimenters delete any reference of a particular FISMO from EEE. Upon deleting
the FISMO will not be executed any more. In order to check for the description of the
FISMO, experimenter can click on the name. This will open a snackbar in the bottom
of the page and will show the description of the selected FISMO.

Initially, all the FISMOs have the NOT YET SCHEDULED status. If the experimenter wants
to start the FISMO, they can switch the toggle button. Upon first toggle, the FISMO will
be scheduled by the EEE with the NORMAL status. Another toggle would PAUSE the
FISMO execution. Yet another toggle would restart the PAUSED FISMO. In order to
successfully schedule the FISMO execution, the current version of the EEE supports
all that is specified in Section 3.2.

A sample of <fed:scheduling> is provided below:

<fed:scheduling>
<fed:startTime>2016-11-08T18:13:51.0Z</fed:startTime>
<fed:Periodicity>600</fed:Periodicity>
<fed:stopTime>2017-11-08T18:13:50.0Z</fed:stopTime>

</fed:scheduling>

The <fed:scheduling> would provide the EEE with the start date, end date and the
periodicity of the FISMO execution. Thus making these attributes essential in the
FISMO description. Once the schedule is set in the EEE, EEE provides a JOB ID that
is used for internal purposes. This JOB ID is then provided with the status NORMAL.
Upon the schedule, the <query> is read by the EEE from the FISMO description and
is sent to FIESTA-IoT Meta-Cloud. The Meta-Cloud executes the query and sends
back the results to the EEE. The EEE stores the result internally and pings the location
specified in the location specified by the <fed:experimentOutput>
(<fed:experimentOutput location=“location”/>). Upon success, the results are
sent to the specified location and deleted from the internal repository. Currently, EEE
assumes that the “location” here is a URL, where the specified credentials are granted
to the EEE to write the results in a file. For reference and ease, a sample code that
experimenters can execute on their server can be found in the following public
repository®. It is thus noteworthy to state that currently EEE only supports one
mechanism right now to send the information to the experimenter. Given the above, it
is thus essential to specify <fed:scheduling> <experimentControl> attribute of
FISMO, <query> under <prt:query-request> under <fed:queryControl> and
<fed:experimentOutput location=“location”>. If the experimenter wants to just
execute the FISMO and not to wait for the EEE to trigger the execution of the FISMO,

5 https://github.com/fiesta-iot/experiment.data.receiver

Copyright © 2017 FIESTA-loT Consortium 90

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

the experimenter can use POLL NOW. The POLL NOW will execute the <query> defined
within the FISMO and would return the results to the same URL that is specified (i.e.
the URL where results of scheduled execution are being sent).

Experiment Management Console
Experiment Details

Experiment ID and Name: 42e99dca-711f-11e7-b02b-fa163e11a752 JunkExperiment
Experiment Description:

List
Experiment Domain of Interest List: Transportation

You can download results of past executions of FEMO/FISMOs using https://platform-dev.fiesta-iot.eu/experiment-result-store for more details see traning material.

Figure 42: Part 1: Experiment Detail Pane

Associated FISMOs

JobID FISMO Name Ownership Status Stopped/Started
3779d063-1057-4530-b7ec-eBeSeedfl4db myUseCase NORMAL [] VIEW LOGS m DELETE JOB
22a1b10c-16da-4f40-9907-39ded 784faa7 FirstFISMO NORMAL @ VIEW LOGS m UNSUBSCRIBE

Figure 43: Part 2: Associated FISMOs Pane

Other available FISMO ID for Subscription

Available FISMOs (choose one)
2ndUseCase: Over time all noise obhservations for a given location © Send data touwr|

Figure 44: Part 3: Subscription Pane

Nonetheless, apart from the above functionality, an experimenter can also subscribe
to an already existing FISMQO®. In case there are many FISMOs available, an
experimenter can choose a particular FISMO from the dropdown list and provide the
URL information (see Figure 44). Note that as EEE only support URL, experimenters
must specify a valid endpoint. Only after validating the experimenter's URL the
“SUBSCRIBE” button will be unlocked. The experimenter can currently only choose
one FISMO at a time.

8 If there were no FISMOs available for subscription this part would be disabled.

Copyright © 2017 FIESTA-loT Consortium 91

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Once successfully subscribed, the list of Associated FISMOs is updated to show the
subscriptions. Each new subscription would provide a new JOB ID where the status of
the JOB would be NORMAL to the subscribed FISMO and its execution would begin as
the schedule specified in the description of that particular subscribed FISMO (see
Figure 43). Moreover, the URL specified in the FISMO will not be used. Instead the URL
specified by the subscriber would be used to forward the results. An experimenter, on
demand, can unsubscribe the subscribed FISMO by clicking “UNSUBSCRIBE”. This
will delete the JOB associated from the EEE.

An experimenter is also given a capability to see the details of past executions of the
“Associated FISMOs”. The details are provided in the form of a graph and contains
information like how much time did it take to execute the FISMO and how much data
was obtained from the Meta-Cloud. This graph however does not show how much time
did it take to execute the FISMO and how much data was obtained from the Meta-
Cloud when the FISMO is polled.

In order to delete the experiment, it is advised that experimenters first stop/delete the
execution of any related FISMO objects on the EEE using the EMC. Once this is done,
they are advised to remove the experiment from the Experiment Registry Client. We
acknowledge this workflow because this will give experimenters a view of what all
services are running and if it is really required to remove them at all.

Copyright © 2017 FIESTA-loT Consortium 92

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

8 IMPLEMENTATION

In this section, we provide details of the installation procedures for the different
components we have built.

8.1.1 Source Code Availability

In the first version of the document [1], we listed that FIESTA-loT components are
available on private Gitlab”. Nevertheless, FIESTA-loT consortium members privately
use Gitlab. A public version of the components is also available for the experimenters
or testbeds for their use. The public versions of the components are available via
Github®. Within Github FIESTA-loT components that are provided are: ontology, TPI,
sample experiment and Experiment Data Receiver.

8.1.2 Components

All of the described components are maven® projects and are deployable within
WILDFLY'? container. The Experiment Data Receiver however is the only component
that currently only executes on Tomcat.

8.1.2.1Experiment Editor
8.1.2.1.1 System Requirements

Table 12 lists the system requirements that are needed to build and deploy the
Experiment Editor. Experiment Editor is built using Node''. Once the component is
successfully deployed its services can be accessed via
http://[HOST]:[PORT]/expeditor where [HOST] is the host and [PORT] the port
on which the Node is running.

Table 12: System Requirements for Experiment Editor

Requirements Version

Node V.6.XX

8.1.2.1.2 Dependencies

The Experiment editor requires certain dependencies that form the core of the
component. These include those listed in the Table 13.

7 https://qitlab.fiesta-iot.eu/platform/core/

8 https://github.com/fiesta-iot

9 https://maven.apache.org
10 hitp://wildfly.org/

1 https://nodejs.org/

Copyright © 2017 FIESTA-loT Consortium 93

https://gitlab.fiesta-iot.eu/platform/core/
https://github.com/fiesta-iot
https://maven.apache.org/
http://wildfly.org/
https://nodejs.org/

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Table 13: Dependencies for Experiment Editor

Requirements Version
PM2 V.2.X.X

8.1.2.1.3 Install and Run

To install and run the experiment editor, the following steps should be followed in a
chronological order. Note that to correctly install the Experiment Editor, no
requirements or dependencies should be previously installed, as there might exist
configuration issues.

Install Node JS

The documentation and package files required for the installation in any system can
be found at https://nodejs.org/en/. To install on an Ubuntu machine, use either:

$ curl -sL https://deb.nodesource.com/setup 6.x | sudo -E bash -
or

$ sudo apt-get install -y nodejs

Install Production Process Manager for Node js ‘PM2’

PM2 is a production process manager for Node.js applications with a built-in load
balancer. It allows applications to be kept alive forever, to reload them without
downtime and to facilitate common system admin tasks.
To install PM2 use:

$ npm install pm2 -g
Setup git access key set

Generation of the RSA key pair is needed to pull the Expeditor from fiesta-ui.git. Copy
the result of public key and send it to the administrator to get access to the server and
the key can be added to the ssh trust store. Following is an example of where a sample
file can be placed/added

$ cat ~/.ssh/fiesta.expeditor.git.pub

Clone and Pull the source from git

Clone the Experiment Editor source code from git using:

$ git «clone https://thyunkim@bitbucket.org/synctechnoinc/fiesta-
ui.git

Pull the Experiment Editor source code from git using

$ cd fiesta-ui

$ git pull

Installing Required Libraries and Start

After pulling the code from the git, the required libraries must be installed using:

Copyright © 2017 FIESTA-loT Consortium 94

https://nodejs.org/en/

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

$ npm install

$ bower install

Start Experiment Editor using

$ pm2 start npm —name expeditor — start
Restarting the Experiment Editor

When code changes, the administrator should first pull from the git and restart pm2 as
follows:

$ git pull

$ npm install

$ bower install

$ pm2 restart expeditor

Logs

The log file of the Experiment Editor can be also accessed using
$ cd ~/.pm2/logs

$ pm2 logs expeditor

8.1.2.2Portal
8.1.2.2.1 System Requirements

Table 14 lists the system requirements that are needed to build and deploy the Portal.
Once the portal is successfully deployed it can be accessed via
http://[HOST]:[PORT]/portalui where [HOST] is the host and [PORT] the port on
which the WILDFLY is running.

Table 14: System Requirements for Portal

Requirements Version
Memory >512MB
Wildfly 10.0.0

8.1.2.2.2 Dependencies

The Portal requires certain dependencies that form the core of the component. These
include those listed in the Table 15.

Table 15: Dependencies for Portal

Requirements Version

Java Java version 8 or later
Spring boot V1.5.8

Thymeleaf V3

Copyright © 2017 FIESTA-loT Consortium 95

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

AdminLTE V2.4

8.1.2.2.3 Install and Run

Below are the commands that someone should use to build the portal on the FIESTA-
loT development machine, using maven:

$./mvnw -DskipTests=true -Pdev clean package

For building the portal on a test environment, one should use the command

$./mvnw -DskipTests=true -Ptest clean package

For building the portal on the production environment, one should use the command
$./mvnw -DskipTests=true -Pprod clean package

For running the portal on any environment. Targeting to be displayed at the “portalui”
address, one should use the command

$ java -jar target/portalui.war

The portal should be deployed by uploading the portal war file via WILDFLY using Java
8 and WILDFLY 10.0.0 or a later version. The portal also saves logs on the portalui.log
file.

8.1.2.3Experiment ResultSet Storage
8.1.2.3.1 System Requirements

The following Table 16 lists the system requirements that are needed to build and
deploy the component on the WILDFLY container. Once the component is successfully
deployed its services can be accessed via http://[HOST]:[PORT]/experiment-
result-store where [HOST] is the host and [PORT] the port on which WILDFLY is
running.

Table 16: System Requirements for ERS

Requirements Version
Java JDK 1.8
Maven 2.X
MySQL Server Community Edition 5.x
Wildfly 10

8.1.2.3.2 Dependencies

The Experiment Result Store (ERS) requires certain dependencies that form the core
of the component. These include those listed in the Table 17. To know the complete
list we redirect the readers to the pom.xml of the component that is made available via:

https://qgitlab.fiesta-iot.eu/platform/core/tree/develop/modules/experiment/ers

Copyright © 2017 FIESTA-loT Consortium 96

https://gitlab.fiesta-iot.eu/platform/core/tree/develop/modules/experiment/ers

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Table 17: Dependencies for ERS

Requirements Version
javaee-web-api 6.0
org.restlet 239
org.restlet.jee 2.3.8
mysql-connector-java 5.1.22
jackson-databind 2.7.0

8.1.2.3.3 Install and Run
Below we list various steps that need to be performed in order to successfully install
the component.

As the first step one has to setup a schema and table in the MySQL database. The
following SQL script can be used to create it:

CREATE SCHEMA IF NOT EXISTS ers;
CREATE TABLE IF NOT EXISTS ers.experiments (
USER_ID varchar(255),
FEMO_ID varchar(255),
JOB_ID varchar(255),
TIME_STAMP varchar(255),
EXPR_RESULT MEDIUMTEXT
)
The above script to generate the database in the MySQL can be found under the
folder /WEB-INF/sql-scripts/create-expr-store.sql.

Once the database is setup, code properties need to be set up. There are two
Properties files under /WEB-INF/config (a) db.properties: dedicated for database
connection setting, and (b) global.properties: for global properties (note, this file is
substituted with the common properties file (fiesta-iot.properties) for the core
platform. The db.properties file consists of following properties:

#hostname for database
hostname = localhost
#port number for database
port=3307

#username for database

username = {username}

Copyright © 2017 FIESTA-loT Consortium 97

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

#password for database

#on first run a database will be created with the password set below
password = {password}

#path for database

#N.B: MAKE SURE DIRECTORY PATH IS ACCESSIBLE.

#for mysql use database name, e.g. "/s2w"

#for H2 use path and database name, e.g. "/~/"

#path=/~/sdr/

name=test2

The global.properties file consists of following properties:

#hostname for OpenAM authentication Proxy.

hostname = {hostname}/openam/json/users?_action=idFromSession
Once the above is done, do the following to generate the WAR file:

$ cd <PATH TO EXPERIMENTRESULTSTORE>

$ mvn clean install

Once all these have been set and the WAR file generated, developers can deploy the
WAR file on the WILDFLY container. The MySQL server instance should be running
before the deployment is done. Once deployed the ERS services can be accessed at
http(s)://<HOST>:<PORT>/experiment-result-store where [HOST] is the host and
[PORT] the port on which WILDFY container is running.

8.1.2.1Experiment Data Receiver
A sample code’? is provided for experimenters to receive data provided by EEE.
8.1.2.1.1 System Requirements

The following Table 18 lists the system requirements that are needed to build and
deploy the component on the experimenter’s side. Once the component is successfully
deployed its services can be accessed via
http://[HOST]:[PORT]/ExperimentServer/store/ where [HOST] is the host and
[PORT] the port that Tomcat uses. The component is tested to be successfully
executed on Tomcat.

Table 18: System Requirements for Data Receiver

Requirements Version

12 https://github.com/fiesta-iot/experiment.data.receiver/tree/master/ExperimentServer

Copyright © 2017 FIESTA-loT Consortium 98

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Java Platform, Standard Edition 1.8.0_25
Maven 3.1.1
Apache Tomcat 8

8.1.2.1.2 Dependencies

The Experiment Data Receiver requires certain dependencies that form the core of the
component. These include those listed in the Table 19. (Note we do not list all the
dependencies needed. To know the complete list we redirect the readers to the
pom.xml of the component that is made available via https://github.com/fiesta-
iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml):

Table 19: Dependencies for Data Receiver

Requirements Version
xml-apis 1.4.01
Resteasy (jaxrs, jaxb- 3.0.6.Final
provider, html)

portlet-api 2.0
servlet-api 2.5

jsp-api 2.1

8.1.2.1.3 Install and Run

To deploy, on the experimenter side following has to be done before the deployment

in the web.xml change the location entry for multipart-config with the
desired location

<multipart-config>
<location>#LOCATION#</location>
</multipart-config>

In the

src/eu/fiesta_iot/experimentServer/ExperimentServerService. java
change the $ (LOCATION) to match the location set in the web.xml

File file = new File("${LOCATION}", fileName)

Note that this location is the desired location where you want to store the
received files.

Make sure that the #LOCATION# has read-write permissions to the Tomcat
user and group (under the name and group Tomcat is running).

In the Tomcat server change the following line in the conf/content.xml

<Context> ... </Context>

Copyright © 2017 FIESTA-loT Consortium 99

https://github.com/fiesta-iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml
https://github.com/fiesta-iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

with the following

<Context allowCasualMultipartParsing="true">

</Context>
« restart Tomcat server
Once the above is done, do the following
$ cd <PATH TO EXPERIMENTSERVER>
$ mvn clean install

$ cp <PATH TO EXPERIMENTSERVER>/target/ExperimentServer.war <PATH TO
TOMCAT WEBAPPS>

Your service is running at http(s)://<HOST>:<PORT>/ExperimentServer/store/
and thus your URLLOCATION should be
http(s)://<HOST>:<PORT>/ExperimentServer/store/

This will enable you to receive the resultsets that are generated after the execution of
your FISMO. As also stated before the name of the file received follows a naming
convention. Again, it is:

String filename = JOBID.replace(“-",””)+URLLOCATION.replace(":",
"").replace("/", " _")+”_»+LONG_TIMESTAMP;

Note here JOBID is a UUID, URLLOCATION is the location that you provide and
LONG_TIMESTAMP is a timestamp in long (milliseconds after epoch).

If the experimenter is using HTTPS, then they should use LetsEncrypt certificate for
this API/URL. All other certificates other than those available in default JVM
configuration will fail. This is because of the JVM does not have all the certificates
installed. However, if the URL is HTTP, it will pass through

8.1.2.2 Experiment/Testbed Monitoring Tool

The Monitoring Tool is based on python and uses a Mongo DB to store data in an
edited way. This is done to prepare the data for other analysis and also to visualize it
in a proper way.

As the tool is not running in a WILDFLY container, it will be integrated into the portal via
an iframe. For this the nginx server, that is serving the portal, is configured to map the
monitoring tool into the namespace of the portal. The configuration also makes sure
that it is only available via HTTPS. This integrates it also into the security framework,
so that users cannot bypass it.

8.1.2.2.1 System Requirements

Following Table 20 list requirements for monitoring tool for the correct execution.

Copyright © 2017 FIESTA-loT Consortium 100

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

Table 20: System Requirements for Experiment/Testbed Monitoring Tool

Requirements Version
python 2.7.x
python-virtualenv 1.11.4
mongoDB >2.4

8.1.2.2.2 Dependencies

Following Table 21 list python dependencies that are needed for monitoring tool for the
correct execution

Table 21: Dependencies for Experiment/Testbed Monitoring Tool

Requirements Version
Flask 0.12.2
Flask-RESTFUL 0.3.6
PyYAML 3.12
pymongo 3.5.1
gevent 1.2.2
requests-futures 0.9.7
python-dateutil 2.6.1

8.1.2.2.3 Install and Run
In the following section, we list all necessary installations and configurations that
should be performed.

e Python and virtualenv creation
The monitoring tool is based on python and so needs a python environment. This is
shipped and preinstalled in all major Linux distributions. As the tool is using several

python modules that are installed via pip, a virtualenv is used to isolate the needed
modules and to not interfere with the modules that are installed system-wide.

To create a virtualenv, the package python-virtualenv is needed:
$ sudo apt install python-virtualenv

Then the virtualenv can be created:

$ virtualenv ${HOME}/.virtualenv/testbed-monitoring

To activate the virtualenv, either it has to be activated or its python binary can be
directly used to run a python file.

$ source ${HOME}/.virtualenv/testbed-monitoring/bin/activate

Copyright © 2017 FIESTA-loT Consortium 101

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

The dependencies need to be installed in the virtualenv:

(testbed-monitoring)$ pip install -r
${TESTBED_MONITORING_HOME}/requirements.txt

e mongoDB
The monitoring tool uses a Mongo database in order to store the extracted data in an
edited way. The data will be transformed and all not needed parts will be removed.
To install mongoDB:
$ sudo apt install mongodb
e Upstart
To control the monitoring tool as a service, an upstart script is used. It can be invoked
to start and stop the system and also to enable the automatic start of the system.
The Upstart script that is used:
description "Testbed Monitoring"
start on runlevel [2345]
stop on runlevel [016]
setuid ubuntu
setgid ubuntu
script
export HOME=/home/ubuntu
cd ${HOME}/fiesta-tools/testbed-monitoring
exec ${HOME}/.virtualenv/testbed-monitoring/bin/python run.py
end script

The testbed monitoring is installed under /home/Ubuntu/fiesta-tools/testbed-
monitoring. The run.py file, which is the start file will be invoked directly with the
python binary from the virtualenv.

e Nginx configuration
As mentioned before, to enable the monitoring tool to be accessible in the portal, some
changes in the nginx configuration are necessary. The monitoring tool is configured to
listen to port 4000 for HTTP connections. The basic namespace is /dashboard. So,

the nginx configuration needs to map in its HTTPS configuration the /dashboard
namespace to the Monitoring tool by using proxying.

The relevant entry inside of the /etc/nginx/sites-enabled/default file:
location /dashboard {

proxy_set _header X-Real-IP $remote_addr;

Copyright © 2017 FIESTA-loT Consortium 102

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

proxy_set header Host $http_host;
proxy_pass http://127.0.0.1:4000;
proxy_read_timeout 90;
}
It will simply pass all URIs starting with dashboard directly to the Monitoring Tool.
e Monitoring Tool configuration
The Testbed Monitoring Tools config file, which can be found under

{TESTBED_MONITORING_HOME}/config.yml, is a yaml file, which can be configured
in an easy way:

monitoring:
iot_registry: http://localhost:8080/iot-registry/api
testbeds_update_time: 120 # minutes
sensors_update_time: 120 # minutes
observations_update_time: 10 # minutes
observation_time span: 7 # days

max_query_span: 1 # days

web:
host: 0.0.0.0
port: 4000
overall duration: 1
db:
host: localhost
port: 27017

db_name: monitoring
drop: False

In the monitoring section the tool itself can be configured, web is for adapting the web
server and db is used to configure the access to the mongoDB.

The monitoring section has the URI to the internal port of the loT-Registry. The fields
* update_time are to configure the interval of the internal tasks to query the loT-
Registry. The field observation_time_span is to limit the maximum days the Testbed
Monitoring Tool will store observations for each sensor. The field max_query_span is
used to limit the maximum query range of the loT-Registry to not ask for too much
data.

Copyright © 2017 FIESTA-loT Consortium 103

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

9 CONCLUSION

This is the last deliverable with respect to the tasks within WP4. This deliverable reports
advancements done within Task 4.4 and Task 4.5 and updates that were performed to
[1]. Via this deliverable, we provide our advancements with respect to how
experimenters could create, deploy and manage experiments, giving as well an
overview about the FIESTA-IoT portal with respect to experimenters. Note that the
portal is not only limited to the tools that are applicable to experimenters but it also
supports tools available for testbed owners (some of which are presented in [15]).
Further, other user roles defined within FIESTA-loT framework would also use the
FIESTA-IOT portal.

This deliverable mainly reports issues identified by the reviewers and provides new
tools that were developed. Nonetheless, the EEE, EMC and Portal were updated to
support new functionalities, APIs and tools to help experimenters achieve their goals.
The updates mainly relate to inclusion of new accounting APl within EEE, more
restricted APIs now being public, and revamped Ul for EMC and Portal. Other than
the updates to the afore-mentioned tools, within this deliverable, new tools such as:
Experiment editor using which experimenters can create configuration/DSL for EEE,
Experiment/Testbed monitoring tool using which experimenters can monitor the status
of the testbed etc., Experiment Data receiver using which experimenters can receive
the resultset, Experiment Result store using which experimenters can download
previously available resultset are also reported.

It is worth mentioning that the provided/discussed tools will be updated on need basis
after analyzing the requirements, if any, from the Open Call/other participants. Of
course, continuous support, integration and bug fixing will be inevitably part of it. As
the tools are also available to public, these tools are well documented and the APIs
within are supported by the documentation where the experimenters can possibly
execute the APIs if they have the right credentials.

Copyright © 2017 FIESTA-loT Consortium 104

Deliverable 4.8: Infrastructure for Submitting and Managing loT Experiments — V2

REFERENCES

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing loT
Experiments,” 2017.

FIESTA-IoT, “Deliverable 2.1: Stakeholders Requirements.”
FIESTA-IoT, “Deliverable 2.3: Specification of Experiments, Tools and KPIs.”
FIESTA-IoT, “Deliverable 5.1: Experiments Design and Specification.”

FIESTA-IoT, “Deliverable 5.2: Experiments Implementation, Integration and
Evaluation,” 2017.

FIESTA-IoT, “Deliverable 3.6: Concept and Development for loT Data Analytics
and loT Stream and Service Management,” 2017.

FIESTA-IoT, “Deliverable 4.6: Tools and Techniques for Managing Interoperable
Data sets,” 2017.

FIESTA-IoT, “Deliverable 4.1: EaaS Model Specification and Implementation,”
2016.

FIESTA-IoT, “Deliverable 2.4: FIESTA-lIoT Meta Cloud Architecture,” 2015.

FIESTA-IoT, “Deliverable 4.4: Authentication, Authorization, Data Protection and
Reservation of Resources V2,” 2017.

A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage Dictionary
of the English Language. Boston: Houghton Mifflin, 1992.

FIESTA-IoT, “Deliverable 4.2: EaaS Model Specification and Implementation,”
2017.

FIESTA-IoT, “Deliverable 3.1: Semantic models for testbeds, interoperability and
mobility support and best practices,” 2016.

FIESTA-IoT, “Deliverable 6.2: Certification suite V1,” 2017.

FIESTA-lIoT, “Deliverable 3.3: Specification and implementation of common
Testbed interfaces,” 2016.

FIESTA-IoT, “Deliverable 3.4: Specification and implementation of common
Testbed interfaces,” 2017.

Copyright © 2017 FIESTA-loT Consortium 105

	/
	HORIZONS 2020 PROGRAMME
	Research and Innovation Action – FIRE Initiative
	Call Identifier:
	H2020–ICT–2014–1
	Project Number:
	643943
	Project Acronym:
	FIESTA-IoT
	Project Title:
	Federated Interoperable Semantic IoT/cloud Testbeds and Applications
	Infrastructure for Submitting and Managing IoT Experiments – V2
	Document Id:
	FIESTA-IoT-D4.8-20171130-Draft
	File Name:
	FIESTA-IoT-D4.8-20171130-Draft.pdf
	Document reference:
	Deliverable 4.8
	Version:
	Draft
	Editor:
	Rachit Agarwal/Nikolaos Georgantas/Valerie Issarny
	Organisation:
	Inria
	Date:
	30 / 11 / 2017
	Document type:
	R, DEM
	Dissemination level:
	PU
	Copyright (2017 National University of Ireland - NUIG / Coordinator (Ireland), University of Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom), Unparallel Innovation, Lda - Unparallel (Portugal), Easy Global Market - EGM (France), NEC Europe Ltd. NEC (United Kingdom), University of Cantabria UNICAN (Spain), Fraunhofer-FOKUS (Germany), Research and Education Laboratory in Information Technologies - Athens Information Technology - AIT (Greece), Sociedad para el desarrollo de Cantabria – SODERCAN (Spain), Ayuntamiento de Santander – SDR (Spain), Korea Electronics Technology Institute KETI, (Korea). The European Commission within HORIZON 2020 Program funds the FIESTA-IoT project.
	DOCUMENT HISTORY
	Rev.
	Author(s)
	Organisation(s)
	Date
	Comments
	V01
	Rachit Agarwal
	Inria
	2017/04/18
	2017/09/04
	2017/09/20
	2017/09/20
	2017/10/24
	Initial version of the Document
	Updated TOC
	Section: Relation with the Functional Architecture, Starting Service with EEE, Experiment Deployment Services, Execute Experiment
	Section: EEE and Receiver Requirements, EEE Monitor APIs Specification, EEE Accounting APIs Specification, Experiment Data Receiver specification
	Section: Experiment Management Console
	Introduction
	Elias Tragos
	NUIG
	2017/10/26
	NUIG Contributions V1
	Ronald Steinke
	FOKUS
	2017/10/27
	2017/10/30
	FOKUS contributions V1
	FOKUS contributions V1 updates
	Tarek Elsaleh
	UNIS
	2017/10/27
	UNIS contributions V1
	Ramnath Teja Chekka
	KETI
	2017/10/31
	KETI contributions V1
	V02
	Rachit Agarwal
	Inria
	2017/11/01
	V2 Generated
	Ramnath Teja Chekka
	KETI
	2017/11/03
	KETI contributions V2
	Ronald Steinke
	FOKUS
	2017/11/07
	FOKUS contributions V2 Updates
	Tarek Elsaleh
	UNIS
	2017/11/07
	UNIS contribution V2 Updates
	V03
	Rachit Agarwal
	Inria
	2017/11/08
	V3 Generated
	Ronald Steinke
	FOKUS
	2017/11/14
	KETI contributions V3
	Ramnath Teja Chekka
	KETI
	2017/11/14
	FOKUS contributions V3
	V04
	Rachit Agarwal
	Inria
	2017/11/14
	V4 Generated, Conclusion
	Tarek Elsaleh
	UNIS
	2017/11/15
	UNIS Contribution V4
	Elias Tragos
	NUIG
	2017/11/15
	NUIG contributions V4
	V05
	Rachit Agarwal
	Inria
	2017/11/15
	Final version ready for review
	Flavio Cirillo
	David Gomez
	Paul Grace
	NEC
	UC
	ITInnov
	2017/11/21
	2017/11/21
	2017/11/22
	TR Review
	TR Review
	QR Review
	V06
	Rachit Agarwal,
	Elias Tragos, Tarek Elsaleh
	Ronald Steinke
	Ramnath Teja chekka
	Inria
	2017/11/25
	Addressed comments
	Rachit Agarwal
	Inria
	2017/11/28
	Deliverable ready for submission
	Draft
	Elias Tragos
	NUIG
	2017/11/30
	Draft for submission
	Overview of Updates/Enhancements over D4.7
	Added new components and divided the section into two sections (section 2 and section 3)
	TABLE OF CONTENTS
	1 Executive Summary/Introduction 7
	2 Relation with the Functional Architecture 9
	3 Requirements 10
	3.1 Experiment Modelling 10
	3.2 EEE and Receiver 11
	3.3 Experiment Execution Result-set Data store 13
	3.4 Experiment/Testbed Monitoring Tool 13
	3.5 Portal 15
	4 FIesta-IoT Technical Architecture 16
	4.1 Sequence Diagram 19
	4.1.1 Starting Service with EEE 19
	4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool 20
	5 Other Tools 22
	5.1 Experiment Result Store (ERS) 22
	5.2 Experiment Data Receiver 22
	5.3 UI Tools 23
	5.3.1 Experiment Editor 23
	5.3.2 Experiment Management Console (EMC) 24
	5.3.3 Reasoning tool (inference Tool) 26
	5.3.4 FIESTA-IoT Acquisition Toolkit 45
	5.3.5 Experiment/Testbed Monitoring Tool 47
	6 Experimentation Services and API Specification 53
	6.1 Experiment Deployment Services 53
	6.1.1 Scheduling APIs 53
	6.1.2 Subscription APIs 63
	6.1.3 Polling APIs 65
	6.2 Experiment Management Services 67
	6.2.1 EEE Monitor APIs 67
	6.2.2 EEE Accounting APIs 70
	6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs 71
	6.3 Experiment ResultSet Storage APIs 76
	6.4 Documentation of APIs 78
	7 Prototype 79
	7.1 PORTAL 79
	7.1.1 Signing in 79
	7.1.2 Menus 80
	7.2 Usage 84
	8 Implementation 93
	8.1.1 Source Code Availability 93
	8.1.2 Components 93
	9 Conclusion 104
	References 105
	LIST OF FIGURES
	Figure 1: FIESTA-IoT Functional Architecture Components addressed in this deliverable are marked in green 9
	Figure 2: FIESTA-IoT Technical Architecture (Full View) 17
	Figure 3: FIESTA-IoT Technical Architecture (Experimenter view) 18
	Figure 4: Sequence Diagram for starting an Experiment 20
	Figure 5: Bootstrapping of the Testbed monitoring 20
	Figure 6: User Interaction with the Testbed Monitoring 21
	Figure 7: Experimenter interactions with ERS 22
	Figure 8: Experiment Editor initial UI 23
	Figure 9: FEMO XML Preview 24
	Figure 10: Experiment Management Console 25
	Figure 11: Create Rule Screen 26
	Figure 12: Create new Rule when Semantic expert 27
	Figure 13: Create new Rule when Semantic expert –Text view input 28
	Figure 14: Create new Rule - Non-Semantic Expert 30
	Figure 15: Example of Rule details 32
	Figure 16: Edit Rule Information 33
	Figure 17: Edit Rule content 34
	Figure 18: Rule Registration home 35
	Figure 19: Register Rule- Available Rules 36
	Figure 20: Register Rule - Detail Rule content 37
	Figure 21: Register Rule - Select Sensor 38
	Figure 22: Register Rule – detailed information 39
	Figure 23: User Interface for editing a rule registration 40
	Figure 24: Rule Execution Home page 41
	Figure 25: User Interface for creating a new Rule execution 42
	Figure 26: Execute Rule on sensor base on specific time 43
	Figure 27: Re-Execute Rule 45
	Figure 28: Analytics Toolkit Tabs 46
	Figure 29: Analytics Input Tab 46
	Figure 30: Analytics Toolkit Result 47
	Figure 31: The Testbed Monitoring Tool embedded in the FIESTA-IoT portal 48
	Figure 32: Testbed Monitoring component in the FIESTA-IoT Platform 49
	Figure 33: Portal welcome page 79
	Figure 34: Portal login page 80
	Figure 35: Portal statistics page 82
	Figure 36: Experiment Template FEMO 85
	Figure 37: Experiment template FISMO 85
	Figure 38: Experiment Template Query 86
	Figure 39: Portal Experimenter Menu 87
	Figure 40: Experiment Register Client 88
	Figure 41: Experiment Register Client - Experiment Browser 88
	Figure 42: Part 1: Experiment Detail Pane 91
	Figure 43: Part 2: Associated FISMOs Pane 91
	Figure 44: Part 3: Subscription Pane 91
	LIST OF TABLES
	Table 1: Requirements addressed by Experiment Modelling tool (Experiment Editor) 10
	Table 2: Requirements addressed by EEE and Receiver 11
	Table 3: Requirements addressed by ERS 13
	Table 4: Requirements addressed by Experiment/Testbed Monitoring Tool 13
	Table 5:Requirements addressed by Portal 15
	Table 6: Query for creating a Rule 28
	Table 7: SPARQL query or a Rule 31
	Table 8: SPARQL Query 44
	Table 9: SPARQL Query 50
	Table 10: SPARQL Query 51
	Table 11: Access roles per portal menu 83
	Table 12: System Requirements for Experiment Editor 93
	Table 13: Dependencies for Experiment Editor 94
	Table 14: System Requirements for Portal 95
	Table 15: Dependencies for Portal 95
	Table 16: System Requirements for ERS 96
	Table 17: Dependencies for ERS 97
	Table 18: System Requirements for Data Receiver 98
	Table 19: Dependencies for Data Receiver 99
	Table 20: System Requirements for Experiment/Testbed Monitoring Tool 101
	Table 21: Dependencies for Experiment/Testbed Monitoring Tool 101
	TERMS AND ACRONYMS
	1 EXECUTIVE SUMMARY/INTRODUCTION
	This deliverable is a second iteration [1]. It is noteworthy to assert that the current deliverable should not be considered as a standalone version but instead read along with deliverable [1]. This document provides an update to the reported tools and also provides technical details on newly developed tools that support experimentation over the FIESTA-IoT Meta Cloud (data store). Some key updates performed in the already reported tools, such as Experiment Execution Engine (EEE), Experiment Management Console (EMC) and Portal include:
	 Updates to the API (Application Programming Interface) of Experiment Execution Engine,
	 Updates to the User Interface (UI) of EMC to support:
	o Experimenters to get/know the required IDs for the getting data from Experiment Result Store (ERS)
	o Delete the scheduled FISMO (FIESTA-IoT Service Model Object) from EEE. Note that throughout this deliverable we will use FISMO and FEMO (FIESTA-IoT Experiment Model Object) but they should be considered as a Service (FISMO) within an Experiment (FEMO).
	 Updates to the Portal include:
	o A newly designed interface to address issues raised previously, such as an enhanced menu that is based on the type of user (Experimenter, Testbed Admins and FIESTA-IoT Admins) and streamlined layout
	o Availability of new tools for different types of users of FIESTA-IoT, and
	o Support for the mobile version of portal.
	Besides the above modifications and updates, we also report technical details on the newly developed and functional modules, such as Experiment editor, ERS and Experiment/Testbed Monitoring tool. Note that some technologies that we described in [1] towards building tools, such as Experiment Editor, are now not used to build the tool due to some limitations with regards to the handling of multiple users.
	Within this deliverable, as reported in [1], we start by analysing the requirements collected in [2] for the developed tools, either new or existing, those coming from in-house experimenters [3], [4], Open Call (OC) participants and the validation done by in-house experimenters [5].
	As this is the last technical deliverable in terms of tools provided under Work Packages 3 and 4 (WP3 and WP4), it is also essential that we report how the FIESTA-IoT platform technical architecture looks like and provide a brief overview of the interactions among those tools that facilitate experimentation over the FIESTA-IoT infrastructure. Note that, within this deliverable, we only focus on the part of FIESTA-IoT platform technical architecture that focuses on experimenters. Following the architecture, we provide updated sequence diagrams for “starting the execution” of the experiment using EEE. The update mainly reflects the integration of FIESTA-IoT Analytics Toolkit (FAT) and the possibility of scheduling the experiment on IoT-Registry or FAT.
	For the monitoring tool, a technical description of it was provided in [6]. In this deliverable, however, we present the user side of the tool and focus on the UI. Additionally, we describe the new tools (those that were not reported before) such as ERS, Experiment Data receiver and UI interface for tools such as Experiment editor, EMC and Reasoning tool to name a few. After this description, we then list the APIs that play an essential role in fulfilling the experimenters’ needs. These APIs mainly include the scheduling, subscription, polling, monitoring, accounting and data download APIs provided by various tools such as EEE, monitoring and ERS tools.
	To meet the users’ expectations, performance analysis of the tools is an essential part once the tools are developed. As all the tools that support development, deployment and management of the experiment are either UI tools or delegate the requests to IoT-Registry, analysis of IoT-Registry with respect to the experimenters’ need is essential. Since this assessment has been already carried out and been reported in [7], we do not report it here.
	A simple mock-up walk-through of the FIESTA-IoT portal (that is now supported in various browsers either on Desktop or on Mobile) follows, with the aim to clearly explain to experimenters the workflow and steps to be performed in order to execute an experiment. Note that the steps reported in this deliverable only focus on one interaction path within the technical framework. However, we do not report workflow for experimenters that directly access IoT-Registry, rather we report the workflow that an experimenter need to follow when interacting with FIESTA-IoT tools such as Experiment Editor, EMC, EEE that facilitate the execution of the experiment.
	A clear installation steps for the tools and how to use the above-mentioned components follow the section. The conclusion concludes the deliverable.
	We also refer the audience to [8] and [1] in order to know more about WP4, its scope, related tasks and targeted audience.
	2 RELATION WITH THE FUNCTIONAL ARCHITECTURE
	The functional architecture of the FIESTA-IoT platform is described in [9]. An updated version of the same is available as in Figure 1. In relation to the platform, in this deliverable we are mainly focused on describing functionalities (other than those mentioned in [1]) that are now supported by both the FIESTA-IoT functional architecture and the FIESTA-IoT technical architecture. To provide a comprehensive view about the tools that are supported by the functional architecture and are reported in this deliverable, we refer readers to Figure 1. These tools are: EEE, Experiment Editor, Experiment Registry Module (ERM), EMC, ERS, and Experiment/Testbed Monitoring (performance monitoring). It should be noted that we have moved some of the tools already reported within WEB Browsing and Configuration Functional Component (FC) outside the FC. We mainly describe interactions between the components that enable experimentation over the FIESTA-IoT platform as part of the technical architecture (Section 4). As for the above-mentioned components, we present them in the next sections along with more requirements.
	/
	Figure 1: FIESTA-IoT Functional Architecture Components addressed in this deliverable are marked in green
	3 REQUIREMENTS
	In this section we provide how the requirements those proposed in [2] are fulfilled by the developed tools.
	3.1 Experiment Modelling

	Table 1 lists requirements addressed by Experiment Editor.
	Table 1: Requirements addressed by Experiment Modelling tool (Experiment Editor)
	For Experiment Modelling the Experiment Editor addresses the above three requirements. We next provide details so as to how these requirements were met.
	 The experiment editor provides the experimenters a UI tool to build experiments (FEMO), services (FISMO) and Queries that would allow them to easily build task thereby fulfilling the requirements 24_NFR_ACC_Tools_planning_auto_tasks and32_NFR_ACC_Provide_dev_deploy_manag_config_tools. The tool itself is explained later in the Section 5.3.1 while the workflow is provided in Section 7.2.1.2.1.
	Note that the requirement
	32_NFR_ACC_Provide_dev_deploy_manag_config_tools is also fulfilled by EEE as it deploys the configuration (in other words FEMO) that is created using Experiment Editor.
	 With respect to the experiments, the tool also provides them the option to manage and configure the experiments (FEMOs) and services (FISMOs) thereby fulfilling the requirement 35_NFR_PLA_Manage_resources_in_query_or_experiment. Note that using the tool we allow the experimenters to manage their experiment. This is done using the capabilities that the UI provides and interactions the tool does with the ERM. As this tool is a UI based tool, the tool provides methods to visualize the needed attributes in the experiment.
	3.2 EEE and Receiver

	Beyond those described in the previous version of the deliverable [1], Table 2 lists requirements that are further satisfied by EEE and Receiver.
	Table 2: Requirements addressed by EEE and Receiver
	The EEE is a component that satisfies part of the non-functional requirement 32_NFR_ACC_Provide_dev_deploy_manag_config_tools defined in [2]. Further, EEE is able to:
	 Schedule at a defined rate a FISMO (a service Model that describes the experiment consisting of entities such as experiment control, details about the query, see [8]) as a Job on the Meta Cloud with minimum possible delay: this requires the EEE to read the QuerySchedule entity that is a part of FISMO, connect to the Meta Cloud and use the Meta Cloud API to execute the query defined in the Query attribute of the FISMO. EEE provides experimenters a functionality to subscribe to any services (FISMOs) on top of their own FISMOs, could request data in different ways for example, based on time period, and could poll for certain data (event based). This satisfies the 11_FR_ACC_Request_data_different_ways. Different EEE APIs that support this requirement are reported in Section 6.1.
	 In order to efficiently serve the experimenters with the data with minimum delays, EEE internally stores the service requests rather than contacting ERM component. Thus, EEE satisfies the 41_NFR_PLA_Minimize_processing_delay.
	 Schedule multiple FISMOs on the Meta Cloud simultaneously. This satisfies 53_NFR_PLA_Execution_concurrent_services.
	 Poll a service to get the data: the EEE enables the execution of the query defined in the Query entity of the FISMO once and on demand.
	 After scheduling, EEE maintains a state variable of the scheduled job: this help experimenters to know the state of their experiment.
	 EEE maintains a log of executed jobs: this enables an experimenter to know how many times a specific FISMO has been successfully executed.
	 The Execution logs and state variables (processing information) is shown to the experimenter via EEE. This targets the 42_NFR_PLA_Data_generated_from_processing_info and is further complemented by the monitoring tool.
	 EEE schedules FISMO queries on IoT-Registry or FAT in an automated manner where experimenters are needed to just start/stop the process on EEE. This feature enables 24_NFR_ACC_Tools_planning_auto_tasks.
	 Provide a mechanism to the experimenters to subscribe/unsubscribe to a certain already discoverable FISMO: this enables experimenters to utilize already existing FISMOs in their experiments. In order to subscribe, the experimenter should provide the experimentOutput attribute in the FISMO so that the EEE could deliver the output accordingly.
	 On top of subscription, if an owner deletes a FISMO, then the subscribers will not be notified about the deletion: this allows subscribers to keep execution of the subscribed FISMO ongoing until the FISMO is unsubscribed.
	 Be able to delete any experimenter related executing job from the EEE along with its history.
	 EEE is able to invoke related widgets like FIESTA-IoT Analytics toolkit besides just interacting with IoT-Registry.
	 EEE is able to send data in different formats required by experimenters.
	 For a large resultset paging of the result is provided: this enables the 23_NRF_ACC_Page_in_subrequests. This is achieved by the Sending module of the EEE that breaks the large datasets into multipart before sending it to the Receiver that concatenates these parts into one.
	 The EEE is stable and satisfy the 51_NFR_PLA_FIESTA_highly_reliable.
	 On top of above, all the APIs of the EEE are well documented (see Section 6.4) and made available to the experimenters so that they can understand the working of the EEE better. This ensures fulfilment of 30_NFR_ACC_FIESTA_well_documented with respect of EEE.
	3.3 Experiment Execution Result-set Data store

	Table 3: Requirements addressed by ERS
	The fit criterion with respect to the only requirement (listed in Table 3) satisfied by ERS states that “FIESTA-IoT is able to store data from experiments during the requested period and process any experiment that did not expire”. The ERS addresses this requirement by providing a storage facility for experimentation results (or data), which can be retrieved by the experimenter at a convenient time. Section 5.1 explains how this storage facility works.
	3.4 Experiment/Testbed Monitoring Tool

	Table 4: Requirements addressed by Experiment/Testbed Monitoring Tool
	The Experiment/Testbed Monitoring Tool satisfies parts of the non-functional requirement 35_NFR_PLA_Manage_resources_in_query_or_experiment. Additionally, the non-functional requirements described in 40_NFR_PLA_Process_feedbacks and 42_NFR_PLA_Data_generated_from_processing_info were addressed. Further, the Experiment/Testbed Monitoring tool is able to:
	 Show the monitored testbeds in a total view and showing the number of active resources per testbed. Additionally, it shows every sensor per testbed with metadata and latest observations. This addresses partially 35_NFR_PLA_Manage_resources_in_query_or_experiment
	 Process the gathered data of the testbeds used for monitoring in order to find not working resources. The result of the processed data shall be available via the API as well as the collected and transformed data. This addresses mainly the two requirements 40_NFR_PLA_Process_feedbacks and 42_NFR_PLA_Data_generated_from_processing_info
	 Retrieving the data from the IoT-Registry and storing it in a transformed way into another database in order to prepare the data for the visualization and for providing it via the API. This assures 41_NFR_PLA_Minimise_processing_delay
	 Providing the summarized overview and the detailed view per testbed in a way that it is clear for the experimenter which information he/she is retrieving. This fulfils 22_NFR_ACC_Distinguish_type_of_data, 49_NFR_PLA_Reliable_time_sync, 64_NFR_RES_Resource_provide_characteristics and 65_NFR_RES_Resource_identified_code.
	 Using the additional IDs per stored resource but also linking to the original ID, which is used in the IoT-Registry. So not only the combined and transformed resources used in the Monitoring Tool can be addressed but also the original resources. This makes sure that 39_NFR_PLA_Info_testbed_agnostic_way is still fulfilled.
	 The API is documented but also self-explanatory in its usage, as required by 30_NFR_ACC_FIESTA_well_documented.
	 The API provides methods to mimic the same filtering methodology as it is used in the IoT-Registry, e.g., filtering resources by phenomena. This fulfils 15_FR_ACC_Discover_resources_by_characteristics.
	3.5 Portal

	Table 5:Requirements addressed by Portal
	The FIESTA-IoT portal plays the role of the user interface for all types of users. It incorporates interfaces for managing and handling all functionalities provided by the FIESTA-IoT platform. For logging in, a single security mechanism is used and the users are only required to login once, they get a token, initiating a session and then they get access to all functionalities, without the need to login separately (addressing the 20_FR_SEC_Experimenter_single-sign-on requirement) [10].
	The portal includes also modules for running automated tasks, especially for the registration of multiple resources (at once) or for scheduling the execution of experiments (addressing the 24_NFR_ACC_Tools_planning_auto_tasks requirement).
	Additionally, the portal provides a simple visualization tool for the results of a query/experiment, so that experimenters can have a first look at the results.
	Testbed providers and experimenters can also see real-time information about the testbeds and the registered resources, to see which are online and sending data and use it for debugging purposes (addressing the 35_NFR_PLA_Manage_resources_in_query_or_experiment requirement).
	The FIESTA-IoT portal includes also a help section dedicated to the documentation of all tools, services and APIs for the experimenters and the testbed providers (addressing the 30_NFR_ACC_FIESTA_well_documented requirement).
	4 FIESTA-IOT TECHNICAL ARCHITECTURE
	A technical version of the FIESTA-IoT platform architecture is provided in Figure 2. Note that, within the scope of this deliverable we are only limited to describe those components that address the experimentation plane (upper part of the Figure 2). Figure 3 provides this view. We next provide a brief description of the functionality of the components:
	 IoT-registry: This component is the cornerstone of the FIESTA-IoT platform. It is the module in charge of handling the semantic information that flows across the FIESTA-IoT platform. Basically, it undertakes the control of the triple-store and internally holds the overall semantic meta-repository. This component is already described in [7] thus it is not described in this deliverable.
	 Experiment Registry Management (ERM): It is the registry where all the experiments are stored. The Experiment Execution Engine and the Experiment Management Console use the ERM APIs to read the information stored about the experiment and take actions accordingly.
	 Experiment Management Console (EMC): It is the User Interface (UI) to the Experiment Execution Engine (EEE). Using this an experimenter can control the execution of the FISMOs beyond what is specified via FEDSpec (FIESTA-IoT Experiment Description Specification). Using EMC an experimenter can also know other related information about the experiment that he provided in the FEDSpec.
	 Experiment Execution Engine (EEE): Engine that executes the experimenter’s need on the IoT-Registry at a specified schedule. It defines a set of services/APIs that are essential for the execution of the experiment. The EMC uses EEE APIs to provide experimenters the execution related information.
	 Experiment Result Store (ERS): ERS stores the results that are not been sent to the experimenter due to any reason like unavailability of receiver etc.
	 Experiment Data Receiver (Receiver): This component is usually executed on the experimenter side and not on FIESTA-IoT side. This component opens a channel for receiving data from EEE after the execution of the query.
	 Experiment Editor (Editor): This component enables experimenters to quickly create FEDSpecs and deploy them on the FIESTA-IoT platform. These FEDSpecs will then be read by EEE and executed accordingly.
	 FIESTA-IoT Analytics Toolkit (FAT): This component enables experimenters to execute data analysis techniques on datasets retrieved from IoT-Registry.
	 FIESTA-IoT Monitoring: This tool allows experimenters to view basic statistics of the data available within FIESTA-IoT ecosystem. It also allows experimenters to know which testbeds are pushing data and how many resources are active in the moment.
	 Reasoning: this tool allows experimenters to define their own reasoning rules (or re-use rules defined by other experimenters) to run on top of the gathered data in order to extract some results. The rules are in the form of “if-then” and can be run on current or historical data streams.
	/
	Figure 2: FIESTA-IoT Technical Architecture (Full View)
	/
	Figure 3: FIESTA-IoT Technical Architecture (Experimenter view)
	An experiment is defined as “Experiment is a test under controlled conditions that is made to demonstrate a known truth, examine the validity of a hypothesis, or determine the efficacy of something previously untried” [11]. Nevertheless, as discussed previously we focus on data-oriented experimentation that can be performed on IoT data stored in the FIESTA-IoT platform. To support experimentation, tools that enable development, deployment and management of an experiment are developed and integrated to fulfil the execution of an experiment. To brief about the tools (see Figure 3), using a UI tool such as Experiment Editor an experimenter can create or develop the DSL for the experiment based on their needs. This DSL, also called as a FEDSpec, contains the specification for the EEE tool to execute the defined experiment. EEE essentially schedules or deploys the experiment on the FIESTA-IoT ecosystem based on the provided specifications. The Experiment Editor uses ERM to save a FEDSpec within the FIESTA-IoT ecosystem. EEE then reads the specifications to schedule the experiment on the FIESTA-IoT ecosystem. EEE is accompanied by an experiment controlling and management UI (Experiment Management Console or EMC) that enables experimenters to view execution summary and control the execution of their experiment. Once an experiment is executed by the EEE, the output is sent to experimenters, who have to to enable a Receiver on their side to get and handle the results. In case these results are not delivered to the experimenter, they are stored in an ERS repository where experimenters can download the results at will. Nonetheless, these tools are also complemented by tool-specific dedicated public APIs using which experimenters can also develop their own experiment workflow in case needed. In another case if an experimenter does not want to use such tools, they can create their own experiment execution like module and query directly the IoT-Registry using the public IoT-Registry APIs.
	A description of some of the components such as EEE and EMC was provided in the V1 of the deliverable [1]. However, in this deliverable we focus on the components that were not described previously. In the next subsection, we present, modified sequence diagrams with respect to EEE functionality. We also show sequence diagrams for the new components. For components like FAT, deliverable [6] provides more technical details.
	4.1 Sequence Diagram

	The addition of the data analytics, result storage, and Experiment modelling has led to a modified sequence diagram for the EEE. Note that sequence diagrams presented in V1 of this deliverable are still valid except the starting of a service.
	4.1.1 Starting Service with EEE

	The updates to “starting of a service” sequence diagram is provided below in Figure 4. Here, we introduce FAT, Sender module and the ERS. If an experimenter defines widget parameter in the FISMO object of the FEDSpec, [12], towards the usage of FAT EEE calls the FAT APIs instead of calling IoT-Registry APIs directly. FAT then calls the IoT-Registry APIs, gets the results and stores them in the ERS. Experimenters are then required to call the ERS APIs to get the results. In Section 6.3 we define the ERS APIs. Instead, if the experimenter does not specify the widget, the EEE calls the IoT-Registry API to retrieve the results of the query specified in the FISMO object. EEE upon a successful response from IoT-Registry, sends the results to the experimenter to the URL endpoint specified by them. If the send fails due to any reason, the EEE stores the results in the ERS for experimenters to later get the results.
	/
	Figure 4: Sequence Diagram for starting an Experiment
	4.1.2 Sequence Diagram Experiment/Testbed Monitoring Tool

	This section provides sequence diagrams for the Experiment/Testbed Monitoring tool.
	/
	Figure 5: Bootstrapping of the Testbed monitoring
	The bootstrapping of the Testbed Monitoring can be seen in Figure 5. First the tasks components “Update Testbeds”, “Update Sensors” and “Update Observations” for retrieving the needed data from the IoT-Registry are started by the “main” component. The retrieved data is transformed and is stored into the mongoDB. This makes sure that enough data is available for the UI and the API to serve requests properly.
	/
	Figure 6: User Interaction with the Testbed Monitoring
	In Figure 6 the two different options for retrieving either a page from the GUI or doing a request against the API are shown. The required login is for both operations necessary. Also for every operation the data will be retrieved from the mongoDB in order to serve the request in proper time.
	5 OTHER TOOLS
	5.1 Experiment Result Store (ERS)

	The ERS is a component within the Experiment Execution subsystem that provides a temporary storage mechanism for experiments executed in an asynchronous manner. This component allows experimenters to retrieve the results of their experiments at their convenience. It should be noted that currently a result is removed from ERS once the experimenter retrieves it.
	Figure 7 shows the interactions that an experiment undergoes for the data to be stored in the ERS. In the first step (as numbered in Figure 7), the experimenter invokes the EEE to process their experiment. In the second step, the EEE will in turn invoke an IoT service to retrieve a dataset. This invocation of IoT service consists of invoking components like FIESTA-IoT Analytics toolkit or IoT-Registry. In the third step, the EEE will typically handle the request and store the result in the ERS. In the case of the FAT service, FAT will forward the result dataset directly to the ERS. The Experimenters can then call the ERS API to retrieve for results of their experiments.
	/
	Figure 7: Experimenter interactions with ERS
	5.2 Experiment Data Receiver

	As a sample, FIESTA-IoT should provide an Experiment Data Receiver that should open a possibility for Experimenters to receive the data made available via EEE. Experimenters can use this tool on their dedicated servers to receive the data. The tool should be able to receive large data objects by the means of multipart file upload. Internally this tool should be able to then save the received data in particular location that is specified in the configuration of the tool.
	5.3 UI Tools
	5.3.1 Experiment Editor

	The Experiment Editor is a UI tool that experimenters could use to model and edit an experiment. Once directed to the Experiment Editor, an experimenter would get a view as shown in Figure 8 with a rectangular block and a number (variable) of square blocks. The rectangle block contains:
	 a number denoting the number of FEMOs created by the experimenter,
	 a search icon that is used to find the FEMO when domain of interest (DOI) is provided and
	 an “+” icon that represents “add a FEMO”, i.e., to create new FEMO.
	Each square block represents a FEMO that the experimenter has previously created. The FEMO block consists of FEMO’s name, description, number of associated FISMOs and list of DOIs that are highlighted in different colour. Further, within each of these FEMOs’ specific “square block”, there would be three choices of operations that would represent (a) duplicate (b) edit, and (c) delete.
	/
	Figure 8: Experiment Editor initial UI
	For the duplicate option, represented by the overlapping square boxes, by clicking on it would create a new FEMO with the same parameter settings as the original FEMO. The APIs that are used in the process are listed in the Scheduling API Specification Section 6.1.1.
	Every FEMO can be edited. This can be done by clicking on the FEMO block or by clicking the “edit” icon. Once the parameters are changed, the experimenter can commit the changes by clicking on the save button as shown in Figure 36 (Experiment Template FEMO). The Edit feature is applied at the following three levels of experiment: FEMO, FISMO and Query Control. Once the changes are made at any given level, the Experiment Editor notifies the EEE and ERM about the state change of the experiment. Before “saving” the changes, the experimenter could review the changes using the “Preview” (as shown in the Figure 9) option available beside “Save” option.
	/
	Figure 9: FEMO XML Preview
	As stated before, an experimenter can delete an Experiment by clicking the “delete” icon on the FEMO block. This would trigger Experiment Editor to notify the EEE and ERM of any experiment termination.
	5.3.2 Experiment Management Console (EMC)

	The EMC is a UI where the experimenter could know about the status of their experiment(s). The EMC would list experiments associated to an experimenter. Upon selecting a specific FEMO, say “InriaExperiment” as in Figure 10, the details of the experiment should be presented to the experimenter. This includes FEMO details, associated FISMOs and other discoverable FISMOs. An experimenter should be able to see the experiment ID, name, description and domain of interest. On top of this, experimenters should have it handy the API through which they can download the experiment results that were not sent to them due to some errors. Towards this, a description or a footnote should be present that reflects this.
	The “Associated FISMO” tab shows the “meta” information about the FISMO. This “meta” information includes:
	 The jobID of the FISMO if it is scheduled, if it is not scheduled then “Not Yet Scheduled” information is displayed,
	 The name and description of the FISMO,
	 Experimenters can also start/stop a particular FISMO. By default, all the FISMOs would have status set to “Not Yet Scheduled”. The experimenter needs to explicitly start the FISMO to schedule it in the EEE. This would change the status to “Scheduled” in the UI,
	 The “Start Now” and “Stop Now” only provide experimenters the information to either start the schedule or if the schedule already exists in the EEE then pause the schedule of the respective FISMO.
	 The experimenters are be able to view the logs of the “Past executions”. This includes information like date-time when the FISMO was successfully executed with the size of the data consumed by the FISMO from the Meta Cloud.
	 An experimenter is able to delete any scheduled FISMO. In case a FISMO is not scheduled the experimenter is not able to delete the FISMO (i.e., they do not see the delete button). If deleted, the FISMO is deleted from the EEE along with all its references within EEE.
	 For “Subscribed” FISMOs (as such FISMOs are not owned), the relevant information is shown including ownership status as “subscriber” and option to unsubscribe the subscription.
	 Nevertheless, other than the above functionality experimenters should also poll for results.
	/
	Figure 10: Experiment Management Console
	The EMC should also provide an option for the experimenters to subscribe to already available FISMOs within the FIESTA-IoT ecosystem. As the FISMOs are already defined, the experimenter is able to:
	 View the existing FISMO of choice,
	 Provide URL location where the results of the execution of the subscribed instance of the FISMO should be sent and
	 Subscribe the FISMO with the new URL location.
	Nonetheless, despite subscribing using the URL location, the experimenter should not be able to change any other parameter of the FISMO they subscribe to.
	5.3.3 Reasoning tool (inference Tool)

	The FIESTA-IoT Reasoning component is an implementation of a semantic reasoner that works on top of the FIESTA-IoT platform. The reasoner engine was described in detail in Deliverable D3.6 [6], providing also details for the API for accessing the reasoning services. In this deliverable, we describe the UI developed within FIESTA-IoT and accessed through the portal, so that it can be used as a tool for experimenters regardless if they are experts in semantics or not. Along with this description, the readers are advised to read the respective Section 3.3 of D3.6 to become more familiar with the architecture of the reasoning engine. Briefly, with the reasoning tool the experimenters will be able to create inference rules in the form of expressions “if (condition) then (result)” for example:
	 If (temperature) > (25degrees) then (notify_hot)
	 If (speed) < (30km/h) then (notify_traffic)
	 If (temperature) < (19degrees) and (humidity) > (60%) then (notify_unhealthy)
	5.3.3.1 Rule Creation

	An experimenter could create new rules in two ways: as a semantic expert or as a non-semantic expert. These actions could be performed on the FIESTA-IoT portal, where there is a menu called “Reasoning”, which has 3 sub menus: Create Rule, Register Rule, and Execute Rule. Note that the tool can also be used as standalone via dedicated APIs, which were mentioned in [6].
	/
	Figure 11: Create Rule Screen
	5.3.3.1.1 Create new Rule – Semantic Expert

	The FIESTA-IoT Reasoning module provides a simple UI (see Figure 11) for enabling experimenters to easily write the rule on a text-view. For assisting the experimenters in this process, the UI also provides sensor information base on the selected quantity kind, so that experimenters can easily see information for the sensors, so that they have a more detailed view when they create their own rule. Here, information like sensor ID, sensor quantity kind, sensor unit of measurement, sensor latitude, sensor longitude or current sensor data is presented as shown in Figure 12 and Figure 13.
	/
	Figure 12: Create new Rule when Semantic expert
	/
	Figure 13: Create new Rule when Semantic expert –Text view input
	Experimenters can create a new simple rule with the “if then” logic within a query as shown in Table 6. In this example, we apply rule “if power_consumption>0.56 Watt then notify experimenter for high consumption”:
	Table 6: Query for creating a Rule
	After filling all the required information as in the UI (see Figure 12 and Figure 13), experimenters can click on the “save” button and store the rule in the FIESTA-IoT Reasoning database. Within FIESTA-IoT, by default all the created rules are public and available to all experimenters associated with FIESTA-IoT platform, hence all these rules can be re-used by other experimenters. When the rule is created successfully, the experimenter is redirected to the initial rule creation page, as shown in Figure 11.
	5.3.3.1.2 Create new Rule when Non-Semantic expert

	The FIESTA-IoT Reasoning tool also provides a simple UI for experimenters who are not familiar with semantics. To create a new rule, such experimenters would click on the “Create new rule – Non-Semantic Expert” button. This option is much easier when an experimenter does not have Semantic knowledge and wants to create new rules with the IF THEN logic (see Figure 14).
	//
	Figure 14: Create new Rule - Non-Semantic Expert
	An experimenter can click on the add-new-rule button “+ New Rule” to add a new rule or click on the remove icon “X” to remove it.
	The FIESTA-IoT Reasoning tool will use the information added by the experimenter for the selected quantity kind, and the rule logic in order to generate a rule template by creating a SPARQL query as shown in Table 7:
	Table 7: SPARQL query or a Rule
	When an Experimenter clicks on the “Save” button, this rule will be stored in the FIESTA-IoT platform and then it will be public and re-usable by other experimenters.
	5.3.3.1.3 Details of Rules

	On the list of rules (see Figure 11) available on the FIESTA-IoT Reasoning, an experimenter can view (for example Rule 14 as shown in the Figure 15) the details of any rule by clicking on the “View” icon.
	/
	Figure 15: Example of Rule details
	5.3.3.1.4 Edit a Rule

	The function for editing a rule is available only to those experimenters that have created the particular rule. This means, an experimenter is not allowed to change a rule created by other experimenters for security purposes.
	On the screen showing the list of rules (see Figure 11) or on the rule details screen (see Figure 15), when an experimenter clicks on the “Edit” button, the screen for editing rules will be shown as in Figure 16 and Figure 17 (Note that in the Figure 17 an experimenter can edit the rule in the provided textbox):
	/
	Figure 16: Edit Rule Information
	/
	Figure 17: Edit Rule content
	5.3.3.2 Rule Registration

	After creating the rule template, an experimenter needs to first register the rule on a selected sensor before executing it. This can be done through the “Reasoning” menu on the portal by selecting the “Register Rule: sub menu. The following Figure 18 is shown:
	/
	Figure 18: Rule Registration home
	For security/privacy reasons, each experimenter can only see his own registered rules and not those of other experimenters.
	5.3.3.2.1 Register a rule

	When an experimenter clicks on the “+ Create new Register Rule” button, the Figure 19 is shown, where the experimenter can add information, such as the description of the registered rule, the quantity kind and the sensor upon which the rule will be executed, and also select the rule template to be used for this registration:
	/
	Figure 19: Register Rule- Available Rules
	As Figure 19 shows, an experimenter can select the rule template from the dropdown menu that shows all the created rules on the platform. By selecting one rule, its detailed information is shown in the “Rule content” field, as shown in Figure 20.
	/
	Figure 20: Register Rule - Detail Rule content
	After selecting the rule template, the next step for the experimenter is to select the sensor ID to register (the quantity is pre-filled according to the rule information) as shown in Figure 21.
	/
	Figure 21: Register Rule - Select Sensor
	After filling the required information on the form and clicking the “Save” button, the rule registration functionality is finished and the new rule is registered and available for execution.
	5.3.3.2.2 Detail Rule registration

	Another functionality on the initial screen that lists the existing rule registrations (as shown in Figure 11) is to see the details of a registered rule, by clicking on the “detail” icon (as shown in Figure 22).
	/
	Figure 22: Register Rule – detailed information
	5.3.3.2.3 Edit a Rule registration

	When experimenters want to edit a rule registration, they can click on the “Edit” button on the detail rule registration page or on the “edit” icon on the list of rule registrations screen. Then, the following is shown (see Figure 23):
	/
	Figure 23: User Interface for editing a rule registration
	The Experimenter can then edit the details of the registered rule, i.e. name, description, select new rule, select another sensor and then click “Save” to update all information on the FIESTA-IoT platform.
	5.3.3.3 Rule Execution

	The final step after creating and registering a rule is to execute it. The FIESTA-IoT platform provides three main functions for creating a “New execution”, performing a “Re-execution” and viewing the details of an execution.
	A Rule execution is the function where the registered rule is executed upon the input sensor data, in order to create some inference data. The home screen of rule execution is shown in Figure 24
	/
	Figure 24: Rule Execution Home page
	5.3.3.3.1 Create a New Execution

	When an experimenter clicks on the “+ New Execution” button, the following form is shown (see Figure 25):
	/
	Figure 25: User Interface for creating a new Rule execution
	In this form, the Experimenter can create a new execution, by selecting a registered rule and setting the “Time for execution”, which can be either in the current measurement or in the measurements within a time range.
	5.3.3.3.2 New execution with current time

	This rule execution happens when the experimenter selects the “Current” option and clicks on the “Save” button. Then, the FIESTA-IoT Reasoning module will execute this registered rule (sensor, rule), giving the result of the execution, which can be either “true” (success) or “false”, together with other details, such as the start, end time, sensor id, rule content, original data, inference data, and full data.
	5.3.3.3.3 New execution with period or range of time

	When an experimenter selects the “Range” execute option, he will be able to select the starting and ending date of the measurements to be considered in this rule, as shown in Figure 26.
	/
	Figure 26: Execute Rule on sensor base on specific time
	The FIESTA-IoT Reasoning will execute a SPARQL query to retrieve sensor data as shown in Table 8:
	Table 8: SPARQL Query
	5.3.3.3.4 Re-Execution

	When an experimenter wants to repeat an execution of the rule, he can just click on the “Re-execute” button on the list of executions. Then, a similar form as with the rule execution will be shown (see Figure 27) and the user will be allowed to select if he wants to re-execute the rule on the current measurement or on a range of measurements.
	/
	Figure 27: Re-Execute Rule
	5.3.4 FIESTA-IoT Acquisition Toolkit

	Other than being a web service, the FAT can also be accessed through a web UI. This interface allows an experimenter to interact with the FAT toolkit visually for single experiments. The page mainly consists of three tabs (see Figure 28). The first being the “Input”. This allows the user to provide the SPARQL query for the dataset and the methods/parameters to apply on it (see Figure 29). Once this is submitted the result is displayed in the “Result” tab (see Figure 30). A plot for certain methods will be provided in the third tab, which is under development.
	/
	Figure 28: Analytics Toolkit Tabs
	/
	Figure 29: Analytics Input Tab
	/
	Figure 30: Analytics Toolkit Result
	5.3.5 Experiment/Testbed Monitoring Tool

	The Testbed Monitoring Tool is intended to provide FIESTA-IoT users with information about the data that is sent by testbeds and can be used by experimenters via the FIESTA-IoT portal.
	5.3.5.1 UI Specification

	The Testbed Monitoring is embedded in the portal as an iframe and can be used as every other component of the portal.
	/
	Figure 31: The Testbed Monitoring Tool embedded in the FIESTA-IoT portal
	As seen in Figure 31 the Testbed Monitoring can be found under the Tools section as Testbed monitoring.
	Its start page is the overview of all monitored testbeds. Here, the locations of the testbeds can be seen in a map and a table, which lists their name, the number of active sensors and total number of sensors, and the contact for each testbed. Here the total number of sensors means all registered sensors in the FIESTA-IoT platform belonging to this testbed and active sensors are resources that have an observation in the last 24 hours.
	By clicking on one of a testbed, a detailed view lists all its underlying sensors and their locations in the map. For every sensor, the internal ID of the sensor used by the Monitoring Tool, the quantity kind, the last observation, the unit and the location are listed. The quantity kind and unit are using the m3-lite Taxonomy [13]. If a sensor is clicked, a modal view pops up, and shows a graph of the latest observations of this sensor and the sensor ID that is used by interacting with the IoT-Registry.
	FIESTA-IoT admins can open the settings view where testbeds can be enabled for showing in the UI or disabled again. The Monitoring Tool provides a notification system. This can be used to receive a notification mail, when a testbed reaches a predefined state, e.g., the number of active sensors reaches a threshold. Experimenters can use this if they find a testbed with problems and want to get informed when it is ready to be used again. By the time writing this deliverable, this function was not yet implemented.
	More detailed information about the usage of the Monitoring Tool can be found in Deliverable 3.6 [6].
	5.3.5.2 Implementation

	The system is integrated into the platform as an additional component.
	/
	Figure 32: Testbed Monitoring component in the FIESTA-IoT Platform
	As seen in Figure 32, the monitoring component connects to the Mongo DB and uses it for storing its data. It is also connected to the IoT-Registry in order to querying data of the platform. In addition, the monitoring tool asks the OpenAM service to use the information of every logged-in user to get the role of it and adjust the view.
	5.3.5.2.1 General Procedure

	The general procedure of the Monitoring tool is the following. In the beginning the configuration is read and the components like tasks, the database connection and the webserver are properly configured.
	In the initialisation phase the background tasks will be started. These tasks are mainly to query the IoT-Registry for the relevant information like testbeds, resources and observations. In the future, tasks regarding analysis will be started in the beginning. Afterwards the Flask server is started for serving the GUI and the API.
	5.3.5.2.2 Bootstrapping

	The bootstrapping is done by the tasks that are related to the IoT-Registry. In this phase, the database will be cleaned when it is configured to do so. If not, the database will be searched for the latest observation time in order to properly set up the query for following observations. The tasks for updating testbeds and resources information will be activated. They will retrieve all relevant data from the IoT-Registry and store it into the database. The tasks are configured to be run on an interval base. When this is done, the task for querying observations is done. This task will use either the latest stored observation or a pre-configured time span in order to start the querying for observations. The retrieval of observations is done in smaller steps until it reaches the actual time and starts normal interval based updates. After this initial bootstrap, the database is filled with the initial data and tasks like analysis and the webserver will be started.
	5.3.5.2.3 Querying the IoT-Registry

	As the Monitoring tool is deployed on the same machine as the IoT-Registry, for retrieving the testbeds information, the IoT-Registry API are used to directly retrieve the testbed names and IRIs (Internationalized Resource Identifier).
	The gathering of all resources and observations is done via executing SPARQL queries. An example query to retrieve all sensors is provided in Table 9
	Table 9: SPARQL Query
	Using the query, a search is performed for sensors that have a unit and a quantity kind. The sensor also has to have a testbed deployment and has to be on a platform that has a location. The deployment is used to determine afterwards to which testbed the sensor belongs. For every sensor the type, the unit, the quantity kind, the testbed and the location are stored into the database. Table 10 lists a sample query for retrieving observations:
	Table 10: SPARQL Query
	Using the query, all observations are collected. For each observation: the related sensor, the time and the value is also gathered. The observations will be stored for every sensor in an array. For each observation, the value and the timestamp are only stored, other meta information like unit is retrieved from the sensor itself.
	To limit the time to a specific interval, the IoT-Registry API supports setting the time boundaries per URL query parameters in the following way:
	POST <OBSERVATIONS_QUERY_URL>?from=<FROM>&to=<TO>
	Where the query url is /iot-registry/queries/execute/observations and <FROM> and <TO> are timestamps in the form ‘YYYYMMDDHHmm’. See [7] for more details.
	5.3.5.2.4 Database operations

	The mongoDB is accessed via the pymongo module that maps the basic operations provided by the database to python. The tasks that will query the IoT-Registry are using the database to store all information that will be later consumed by other components of the tool.
	The webserver that provides the GUI and the API is using the database to get the information, transform it in the required form and serve it.
	5.3.5.2.5 UI tasks

	The webserver fulfils two kinds of operations. The first is to provide the web sites in order to see the overview of all operations and also to present the detailed view of any testbed. The other is to provide an API for the data that is stored into the database.
	5.3.5.2.6 Requesting OpenAM

	In order to generate a specific view per user role in the UI, the monitoring tool uses the security component of the FIESTA-IoT platform. The UI is embedded in the portal UI that is protected by the security component. After a user is logged-in, a header is set for every further call. The monitoring tool uses this header in order to query the role of this specific user. After this, the required UI is compiled and delivered.
	6 EXPERIMENTATION SERVICES AND API SPECIFICATION
	6.1 Experiment Deployment Services

	Below we list the experiment deployment related services provided by EEE. These services are services that ensures and target scheduling aspects, subscription and polling.
	6.1.1 Scheduling APIs

	The /startFISMOExecution starts the schedule as specified in the FISMO object. This API upon successful starting returns {“response”: “Job Scheduled”, “jobID”: <JobID>}. The jobID and the status are stored in a database. The API reads the FISMO object associated with the FISMOID and its QuerySchedule attribute that contains scheduling information. The following scheduler services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/scheduler/<API>
	API
	/startFISMOExecution
	Description
	This API is used to start execution of the experiment service (FISMO). This API provides a jobID to the FISMO upon the successful scheduling on the Meta Cloud. The API uses timeSchedulePayload to define the startTime, stopTime and periodicity of the job to be executed.
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String timeSchedulePayload
	The timeSchedulePayload is a JSON string that should contain startTime, stopTime and periodicity. A sample of such JSON is {"startTime":"2016-09-15T13:57:00.0Z", "stopTime":"2016-09-15T16:30:00.0Z","periodicity":60}. Here startTime and stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z’) and the periodicity is in seconds. The default value is set to “”. The empty string is interpreted as 0.
	Output
	{“response”: “Job Scheduled”, “jobID”: <JobID>} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	If the status is scheduled then jobID is returned.
	Produces
	application/json
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist.
	 “InvalidTimeScheduleStructure”: timeSchedulePayload JSON structure is incorrect or does not exist.
	 “UnParsableDate”: either startTime or stopTime is not in the correct format and thus cannot be parsed in the required format.
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute”
	To retrieve the jobIDs for a particular already scheduled FISMO, /getJobIDsfromFISMOID is used.
	API
	/getJobIDsfromFISMOID
	Description
	This API is used to get the jobID of a particular already scheduled FISMO. Note that this JobID is the ID given by the Scheduler to the FISMO execution.
	Method
	GET
	Input
	HeaderParam: String fismoID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“jobIDs”: [<JobID1>, <JobID2>..]} is returned as a Response if successful. Here the JobIDs is a list of job IDs associated to the FISMOID. A list is returned because there might be subscribers who might have subscribed to a particular FISMOID. Each subscription to a FISMOID, provides a new jobID to the subscription. This is because we consider each subscription to be different. {“response”: “No Jobs”} is also returned if there is no Jobs found for a particular FISMO. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To retrieve jobID from a given fismoID, userID and femoID, /getJobIDfromFISMOIDUserIDandFEMOID is used.
	API
	/getJobIDfromFISMOIDUserIDandFEMOID
	Description
	This API is used to get the jobID associated to a particular fismoID, userID and femoID triple.
	Method
	GET
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: Boolean owner (default value true)
	Output
	{“jobID”: <JobID>} is returned as a Response if successful. {“response”: “No Job ID”} is also returned if there is no JobID was found for the input pair. {“response”: <ERROR>} is returned as a Response if unsuccessful. For the possible list of error please see the Errors row below.
	Produces
	application/json
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To retrieve the details about a jobID, /getJobIDDetails is used.
	API
	/getJobIDDetails
	Description
	This API is used to get the details associated to a particular jobID.
	Method
	GET
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“JobID”: <JobID>, “Group”: <GroupID>, “timeSchedule”: {“startTIme”: <startTime>, “stopTime”:<stopTime>, “periodicity”:<periodicity>}, “status”:<status>} is returned as a Response if successful. Here the groupID is the FISMOID and status is a job status from the list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]. {“response”: “No Job information found”} is also returned if there is no Jobs data. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To retrieve the details about all jobIDs, /getAllJobIDDetails is used. This API is similar to the previous one.
	API
	/getAllJobIDDetails
	Description
	This API is used to get the details of all the jobIDs.
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“JobsScheduled”: [{“jobID”: <JobID1>, “Group”: <GroupID>, “startTIme”: <startTime>, “stopTime”: <stopTime>, “periodicity”: <periodicity>, “status”: <status>}..]} is returned as a Response if successful. Here the groupID is the FISMOID and the status is a job status from the list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]. {“response”: “No Jobs Scheduled”} is also returned if there is no Jobs data. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	Further, to get all the jobIDs for all the scheduled FISMOs use /getJobID
	API
	/getJobIDs
	Description
	To API is used to get all the existing jobIDs.
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“jobIDs”: [{“jobID”: <JobID1>, “FISMOID”: <FISMOID>}..]} is returned as a Response if successful. Here the JobID is the job ID of the scheduled FISMOID. {“response”: “No Jobs Scheduled”} is also returned if there is no Jobs data. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	The /stopJobExecution stops the job that was already started using the previous defined start APIs. This API takes as an input the JobID and stops the job by deleting it from the scheduler.
	API
	/stopJobExecution
	Description
	The API is used to pause the execution of a particular job
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Job paused successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	If a job is paused, it can also be resumed. To resume a job /resumeJobExecution is used.
	API
	/resumeJobExecution
	Description
	To API is used to resume the execution of a particular job
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Job resumed successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	The EEE also provide APIs to reschedule, delete jobs and identify what are the currently executing jobs. This is achieved using /rescheduleJob, /deleteScheduledJob, /deleteAllScheduledJobs and /getCurrentlyExecutingJobs.
	API
	/rescheduleJob
	Description
	This API is used to change the schedule of an already scheduled Job.
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String timeSchedulePayload
	The timeSchedulePayload is a JSON string that should contain startTime, stopTime and periodicity. A sample of such JSON is {"startTime":"2016-09-15T13:57:00.0Z", "stopTime":"2016-09-15T16:30:00.0Z","periodicity":60}. Here startTime and stopTime are in Date format (YYYY-MM-DD’T’HH:mm:ss.SSS’Z’) and the periodicity is in seconds.
	Output
	{“response”: “Job rescheduled successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteScheduledJob
	Description
	This API is used to remove a particular scheduled job from the Scheduler
	Method
	POST
	Input
	HeaderParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Job deleted successfully”} is returned as a Response if successful. {“response”: “No Job found”} could also be returned. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteAllScheduledJob
	Description
	This API is used to remove all scheduled job from the Scheduler. This API will be protected and will be only available to the FIESTA-IoT administrators.
	Method
	POST
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “All Job deleted successfully”} is returned as a Response if successful. {“response”: “No Jobs found”} could also be returned. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getCurrentlyExecutingJobs
	Description
	This API is used to get all the jobs that are currently being processed. Note that this is different from listing all jobs that are available in the persistence store of the scheduler.
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “Currently Executing Jobs.”, “Jobs”: [<jobs>..]} is returned if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	To support ERM and provide single point of delete and update, EEE provides a set of triggers that should be used by the ERM to notify EEE whenever an experimenter deletes, reschedules or update a FISMO. Within this scenario, the APIs are /fISMOUpdateTrigger, /deleteFismoJobTrigger, /deletefismoJobTriggerlist and /deleteScheduledJobsOfFISMO
	API
	/fISMOUpdateTrigger
	Description
	This API is used to update a particular FISMO if it is already scheduled on the EEE.
	Method
	POST
	Input
	Body: FISMO fismo
	Output
	{“response”: “Job rescheduled successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 The FISMO object is null
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteFismoJobTrigger
	Description
	This API is used to delete a particular FISMO if it is already scheduled on the EEE.
	Method
	POST
	Input
	HeaderParam: String fismoID
	Output
	{“response”: “Job deleted successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deletefismoJobTriggerlist
	Description
	This API is used to delete list of FISMOs if it is already scheduled on the EEE.
	Method
	POST
	Input
	Body: String fismoIDs
	In JSONArray format
	Output
	{“response”: “FISMOs deleted successfully”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 No FISMOs Specified.
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/deleteScheduledJobsOfFISMO
	Description
	This API is used to delete jobs associated to a particular FISMO.
	Method
	POST
	Input
	HeaderParam: String fismoIDs
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“response”: “All jobs associated to Fismo are deleted”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.1.2 Subscription APIs

	The subscription services (/subscribeToFISMOReport and /unsubscribeToFISMOReport to the discoverable FISMOs) are used so that an experimenter can subscribe to existing discoverable FISMOs or unsubscribe from already subscribed FISMO. The following subscription based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/subscription/<API>
	API
	/subscribeToFISMOReport
	Description
	This API is used to subscribe to a particular FISMO’s report
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String userID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String experimentOutput
	Here the experimentOutput is the ExperimentOutput attribute of the FISMO in the JSON ({“url”: <url>}). A sample of currently valid experimentOutput is {"url":"http://myExperiment.com"}. Further, the userID is the ID of the experimenter, and the femoID is the ID of the experiment to which subscription is to be associated to.
	Output
	{“response”: “subscribed”, “FISMOID”: <FIMSOID>, “JobID”: <JobID>} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchUserID”: userID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “AlreadySubscribed”: FISMOID is already subscribed and associated to the userID.
	 “InvalidURL”: invalid url
	 “InvalidExperimentOutputJson”: invalid Experiment Output Json
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API or subscription failed”
	API
	/unsubscribeToFISMOReport
	Description
	This API is used to unsubscribe from a particular FISMO’s report
	Method
	POST
	Input
	Header Param: String fismoID
	HeaderParam: String iPlanetDirectoryPro
	Header Param: String femoID
	femoID is ID of the experiment to which subscription is to be associated to.
	Output
	{“response”: “Unsubscribed”} is returned as a Response if successful. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchUserID”: userID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “SubscriptionNotFound”: FISMOID is not associated to the userID.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API or un-subscription failed”
	6.1.3 Polling APIs

	A polling service is a service using which an experimenter can run the FISMO once without actually scheduling it. The following polling based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/polling/<API>
	API
	/pollForReport
	Description
	This API is used to invoke a previously defined FISMO. A call to this API will only produce one Resultset that will be sent to the URL specified in the ExperimentOutput parameter.
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: Boolean owner (default value true). This parameter basically tells the EEE if it has to look into subscriber realm or the owner realm
	Output
	{“response”: “Polled Successfully”: “jobID”: <JOBID>} is returned as a Response if successful. Here JobID is the jobID of the generated for the particular poll. Experimenters are advised to keep this jobID in their record. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 Something went wrong
	 FIESTA-IoT Analytics tool was not invoked correctly. Thus polling failed.
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “InvalidURL”: invalid url
	 “InvalidExperimentOutputJson”: invalid Experiment Output Json
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/dynamicPollForReport
	Description
	This API is used to invoke a previously defined FISMO. A call to this API will only produce one Resultset that will be sent to the URL specified in the ExperimentOutput parameter. However, this API is different from previous API with respect to the possibility of providing parameter values. This is useful in the case of mobile applications.
	Method
	POST
	Input
	HeaderParam: String fismoID
	HeaderParam: String femoID
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: Boolean owner (default value true)
	QueryParam: String geoLatitude (default value “0”)
	QueryParam: String geoLongitude (default value “0”)
	QueryParam: int intervalNowToPast (default value 0)
	QueryParam: Long fromTime (default value “0L”)
	QueryParam: Long toTime (default value “0L”)
	Body: String Others
	This is a JSON object represented as a string. The default value is “{}”. However, experimenters need to set the key value pair depending on the query. A JSON object the experimenters need to set is
	{
	"KATInput": {"Method": [""], "Parameters":[""]},
	"otherParameters": {<key>:<value>}
	}
	Here, KATInput essentially reflects the input needed for the FIESTA-IoT Analytics Toolkit, while otherParameters reflect the dynamic attributes
	Output
	{“response”: “Dynamically Polled Successfully”: “jobID”: <JOBID>} is returned as a Response if successful. Here JobID is the jobID of the generated for the particular poll. Experimenters are advised to keep this jobID in their record. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 Something went wrong
	 FIESTA-IoT Analytics tool was not invoked correctly. Thus, polling failed.
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “JSONException”: invalid JSON
	 “QueryException”: invalid query and Parameters
	 “InvalidExperimentOutputJson”: invalid Experiment Output Json
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.2 Experiment Management Services

	In this section, we list the experiment management APIs that are provided by the EEE and the testbed status Monitoring services.
	6.2.1 EEE Monitor APIs

	Here we list all the APIs that provide “meta” information about an experiment and the associated services (FISMOs). The following monitoring based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/monitoring/<API>
	API
	/getJobIDStatus
	Description
	This API is used to get the status of a particular jobID, i.e., one from the list [BLOCKED, COMPLETE, ERROR, NONE, NORMAL, PAUSED]
	Method
	GET
	Input
	QueryParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“JobID”: <JobID>, “status”: <STATUS>} is returned as a Response if successful. Here STATUS is one from the list as described above. Other messages that are returned are {“response”: “Job not Scheduled”} {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “SchedulerException”: is a generic error returned by the Quartz scheduler
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getAllSubscribersOfFISMOID
	Description
	This API is used to get a list of subscribers (or the experimenters) that are using a particular FISMO.
	Method
	GET
	Input
	QueryParam: String fismoID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“UserIDs”: [<UserID1>, <UserID2>,..]} is returned as a Response if successful. Here, the “UserIDs” is a list of userIDs that have subscribed to the particular FISMO. It is also possible to get an empty JSON object if there is no user that has subscribed to the given FISMOID. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchServiceModelObjectID”: FISMOID is incorrect or does not exist
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getAllSubscriptionsOfExperimenter
	Description
	This API is used to get a list of user subscriptions irrespective of the experiment
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“FISMOIDs”: [<FISMOID1>, < FISMOID2>,..]} is returned as a Response if successful. Here, the “FISMOIDs” is a list of FISMOIDs that the user has subscribed. It is also possible to get an empty JSON object if there are no FISMOIDs that a user has subscribed. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getMySubscriptionsforExperiment
	Description
	This API is used to get a list of user subscriptions with respect to a particular experiment
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: String femoID
	Output
	{“Subscriptions”: [{“jobID”: <jobID>, “fismoID”: <FISMOID1>},..]} is returned as a Response if successful. Here, the “Subscriptions” is a list of jobIDs and FISMOIDs that the user has subscribed. It is also possible to get an empty JSON object if there are no subscriptions for a particular experiment by the user. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchUserID”: userID is incorrect or does not exist
	 “NoSuchExperimentID”: FEMOID is incorrect or does not exist
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API or Subscription Failed”
	API
	/getJobExecutionLog
	Description
	This API is used to get the ExecutionLog of a Job. The return is a JSON array with “executionTime” and “dataConsumed” information. Here executionTime is the time it took to successfully execute the Job.
	Method
	GET
	Input
	QueryParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“ExecutionLog”: [{“executionTime”: <time1>, “dataConsumed”: <dataConsumed1>}, {“executionTime”: <time2>, “dataConsumed”: <dataConsumed2>},..]} is returned as a Response if successful. Here, the “ExecutionLog” is a log of successful executions of jobID. It is also possible to get an empty JSON object if there is no ExecutionLog for the jobID. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.2.2 EEE Accounting APIs

	Here we list all the APIs that provide counting of the number of times experiments associated to an experimenter have been executed and the number of times a particular experiment service (FISMOs) has been executed. The following accounting based services can be invoked using a path https://<HOST>:<PORT>/schedulerServices/accounting/<API>
	API
	/getUserExecutionCount
	Description
	This API is used to get the number of times a particular user has executed experiments
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	QueryParam: String fromTime
	QueryParam: String toTime (default “”)
	The fromTime is a string that should be in the format YYYY-MM-DD’T’HH:mm:ss.SSS’Z’. A sample fromTime is “2016-09-15T13:57:00.0Z”. In case toTime is not provided, UTC now will be used.
	Output
	{“count”: <count>} is returned as a Response if successful. Here, the “count” is the number of times a user has executed experiments. Note that the count can also be 0. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “UnParsableDate”: fromTime is not in the correct format and thus cannot be parsed in the required format.
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	API
	/getJobExecutionCount
	Description
	This API is used to get the number of times a particular job was executed.
	Method
	GET
	Input
	QueryParam: String jobID
	HeaderParam: String iPlanetDirectoryPro
	Output
	{“count”: <count>} is returned as a Response if successful. Here, the “count” is the number of times the job is executed. Note that the count can also be 0. {“response”: <ERROR>} is returned as a Response if unsuccessful.
	Produces
	application/json
	Errors
	 “NoSuchJobID”: JobID is incorrect or does not exist
	 “PersistenceException”: is a generic error returned by the Quartz scheduler.
	 “ImplementationException”: is a generic error however with respect to this API it would mean “Failed to execute the API”
	6.2.3 FIESTA-IoT Access Mechanism & Testbeds status APIs

	Here we list all the APIs that provide experimenters info on the testbed status, monitor a sensor etc. The following APIs can be invoked using a path https://<HOST>:<PORT>/testbed-monitoring/api/<API>.
	API
	/testbeds
	Description
	This API is used to get all testbeds that are known by the monitoring tool.
	Method
	GET
	Input
	None
	Output
	Returns the list of testbeds in the format:
	{“<TESTBED_IRI>”: “<TESTBED_NAME>”,..}
	Here <TESTBED_IRI> is the identifier which is used in the Iot-Registry.
	Produces
	application/json
	Errors
	 None
	API
	/testbeds/activated
	Description
	This API is used to get all testbeds that are activated.
	Method
	GET
	Input
	None
	Output
	Returns the list of all activated testbeds in the same format as in /testbeds.
	Produces
	application/json
	Errors
	 None
	API
	/testbeds/<string:testbed_name>
	Description
	This API is used to get all known information about specific testbed.
	Method
	GET
	Input
	URLParam: String : The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	Output
	Returns the testbed information in the following format:
	{
	 "activated": <activated>,
	 "location": {
	 "latitude": <latitude>,
	 "longitude": <longitude>
	 },
	 "testbed_name": <TESTBED_NAME>,
	 "sensors": {
	 "active": <active_sensors>,
	 "relative": <relative_sensors>,
	 "total": <total_sensors>
	 },
	 "_id": <INTERNAL_ID>,
	 "testbed_iri": <TESTBED_IRI>
	}
	Produces
	application/json
	Errors
	 {"error_msg": "No testbed found for <TESTBED_IRI>", "error": true}
	API
	/testbeds/<string:testbed_name>/sensors
	Description
	This API is used to get all known sensors from a specific testbed.
	Method
	GET
	Input
	URLParam: String - The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	QueryParam: String sensor-type – The list can be filter by the type of sensor (e.g.: m3-lite:HumiditySensor)
	QueryParam: String unit – The list can be filter by the measured unit of sensor (e.g.: m3-lite:Percent)
	QueryParam: String quantity-kind – The list can be filter by the measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity)
	Output
	Returns the list of all sensors in the following format:
	[
	 {
	 "sensor_name": <SENSOR_NAME>,
	 "longitude": <longitude>,
	 "latitude": <latitude>,
	 "sensor_type": <sensor_type>,
	 "unit": <unit>,
	 "deployment": <deployment>, # The ID of the testbed this sensor is deployed on
	 "quantity_kind": <quantity_kind>,
	 "newest_value": {
	 "color": <color>,
	 "value": <value>
	 },
	 "newest_date": {
	 "color": <color>,
	 "value": <value>
	 },
	 "_id": <INTERNAL_ID>
	 },
	 {...},
	 ...
]
	Produces
	application/json
	Errors
	 {"error_msg": "No testbed found for <TESTBED_IRI>", "error": true}
	API
	/sensors
	Description
	This API is used to get all known sensors from all testbeds.
	Method
	GET
	Input
	QueryParam: String sensor-type – The list can be filter by the type of sensor (e.g.: m3-lite:HumiditySensor)
	QueryParam: String unit – The list can be filter by the measured unit of sensor (e.g.: m3-lite:Percent)
	QueryParam: String quantity-kind – The list can be filter by the measured quantity kind of sensor (e.g.: m3-lite:RelativeHumidity)
	Output
	Returns the list of all sensors in the same format as in /testbeds/<string:testbed_name>/sensors
	Produces
	application/json
	Errors
	None
	API
	/sensors/<string:sensor_name>
	Description
	This API is used to get all information about one specific sensor.
	Method
	GET
	Input
	URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the wanted sensor
	Output
	Returns the sensor information in the following format:
	{
	 "sensor_name": <SENSOR_NAME>,
	 "longitude": <longitude>,
	 "latitude": <latitude>,
	 "sensor_type": <sensor_type>,
	 "unit": <unit>,
	 "deployment": <deployment>, # The INTERNAL_ID of the testbed this sensor is deployed on
	 "quantity_kind": <quantity_kind>,
	 "newest_value": {
	 "color": <color>,
	 "value": <value>
	 },
	 "newest_date": {
	 "color": <color>,
	 "value": <value>
	 },
	 "_id": <INTERNAL_ID>
	}
	Produces
	application/json
	Errors
	 {"error_msg": "No sensor found for <SENSOR_NAME>", "error": true}
	API
	/sensors/<string:sensor_name>/observations
	Description
	This API is used to get all observations for one specific sensor.
	Method
	GET
	Input
	URLParam: String : The SENSOR_NAME or the INTERNAL_ID of the wanted sensor
	Output
	Returns the list of observations for this sensor in the following format:
	[
	 {
	 "time_value": <ISO_TIME>,
	 "data_value": <VALUE>
	 },
	 {...},
	 ...
]
	Produces
	application/json
	Errors
	 {"error_msg": "No sensor found for <SENSOR_NAME>", "error": true}
	API
	/testbeds/<string:testbed_iri>/activate
	Description
	This API is used to activate a testbed in the monitoring tool. All testbeds will be monitored but only activated testbeds will be shown in the GUI.
	Only FIESTA-IoT admins are permitted to activate and deactivate testbeds.
	Method
	GET
	Input
	URLParam: String : The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	Output
	Returns the activated testbed in the same format as in /testbeds/<string:testbed_iri>
	Produces
	application/json
	Errors
	 {"error_msg": "Error while activating testbed <TESTBED_IRI>. Testbed could not be found.", "error": true}
	API
	/testbeds/<string:testbed_iri>/deactivate
	Description
	This API is used to deactivate a testbed in the monitoring tool.
	Method
	GET
	Input
	URLParam: String: The TESTBED_IRI or the INTERNAL_ID of the wanted testbed
	Output
	Returns the deactivated testbed in the same format as in /testbeds/<string:testbed_iri>
	Produces
	application/json
	Errors
	 {"error_msg": "Error while deactivating testbed <TESTBED_IRI>. Testbed could not be found.", "error": true}
	6.3 Experiment ResultSet Storage APIs

	Here we list all the APIs that provide ERS functionalities. The following APIs can be invoked using a path https://<HOST>:<PORT>/experiment-result-store
	API
	/experiment-result-store
	Description
	This interface allows experiment results to be stored in persistence until it is retrieved by the experimenter. Results must be stringified and encapsulated in a JSON object.
	Method
	POST
	Input
	HeaderParam: String userID, Username of the client
	HeaderParam: String femoID
	HeaderParam: String jobID: optional, jobID of the FISMO in the EEE
	Output
	204 OK
	Produces
	application/json
	Errors
	400 Bad Request
	API
	/experiment-result-store
	Description
	All result sets that cannot be sent to the experimenters are stored in the Experiment Result Storage (ERS). ERS stores result set as is and returns them when service is invoked. Upon a success, the particular result set is deleted from the store.
	Experimenters need to use an ERS API to download the needed data. This API has a signature
	Method
	GET
	Input
	HeaderParam: String iPlanetDirectoryPro
	HeaderParam: String femoID
	HeaderParam: String jobID: optional, JobID of the FISMO in the EEE
	If both FEMOID and JobID are provided, then the corresponding FISMO results are returned.
	If only the FEMOID is provided, then all FISMO execution results under that particular FEMO along with its corresponding job IDs are returned.
	Output
	On successful response following provided template is returned
	{ "femoResults": [
	 { "jobid": "<JOBID>",
	 "results": [
	 { "time": "<TIMESTAMP>",
	 "result": "<RESULTSET>"
	 }
]
	 },……
]}
	{“response”: <ERROR>} is returned as a Response if unsuccessful
	Produces
	application/json
	Errors
	400 Bad Request
	401 Unauthorized
	6.4 Documentation of APIs

	The EEE API documentation was built using Swagger and is available to the Experimenters for testing and understanding. The EEE APIs are divided into 2 categories: one for the experimenters and another for the FIESTA-IoT Admins. For security purposed we just release the link for the APIs that are made public to the experimenters. The public version of the APIs for other components like FAT and ERS is available in Markdown. Please note that for some tools like the monitoring tool, the API documentation is still under implementation phase. It will soon be added to the portal.
	7 PROTOTYPE
	7.1 PORTAL

	The FIESTA-IoT project has developed a portal to be used by all the users of the platform as a one-stop shop for all activities. This web-portal has been re-designed in order to improve both the user experience and the look and feel. The current version of the portal is based on bootstrapping CSS and html5 and provides a simple but user-friendly interface. The welcome page of the portal is shown in Figure 33. As it can be seen, the simple interface provides a left vertical menu, leaving the rest of the page free for the actual content.
	/
	Figure 33: Portal welcome page
	7.1.1 Signing in

	The FIESTA-IoT portal is not accessible publicly and only registered and accredited users have access. In order to login to the portal, the users should access the page: https://platform.fiesta-iot.eu that will redirect automatically to the login page of the OpenAM [10], as shown in Figure 34.
	After using the correct credentials, the users are redirected to https://platform.fiesta-iot.eu/portalui that displays the initial web page of the portal, as shown in Figure 33.
	/
	Figure 34: Portal login page
	7.1.2 Menus

	The portal provides five different menu categories:
	 Home: this is the initially displayed menu, which includes some generic interest pages that are accessible by all users that are registered to the portal. This category includes the following pages:
	o Welcome: this displays the initial welcome page with general information about the FIESTA-IoT project.
	o Guide: this page shows some basic information with links to the FIESTA-IoT Moodle pages for the complete guides for experimenters and testbed providers.
	o Contact us: this page includes information for contacting the support team or the project management team.
	o Statistics: this page includes some sample statistics about the usage of the FIESTA-IoT platform. It includes two tables, with (i) mapping of experiments per testbed and (ii) mapping of testbeds per domain. It also includes two graphs with statistics for the reasoning tool and the number of registered devices per quantity kind. This page is shown in Figure 35.
	 Experimenter: this is the main menu category for experimenters to create, edit and manage their experiments using the developed user interfaces. This menu includes the following web pages:
	o Experiment editor: this is the tool for creating and editing experiments (see Section 5.3.1 for more details).
	o Experiment Register Client: this is the tool for uploading and registering experiments via a FEDSPEC file.
	o Management console: this is the tool for managing, scheduling and running experiments (see Section 5.3.2 for more details).
	 Testbed provider: this is the main menu category used by testbed providers for registering their testbed, the resources and configuring them. It includes the following pages:
	o Register testbed: this page displays the tool for the online registration of a new testbed.
	o Register resources: this page displays the tool for the online registration of new devices for the selected testbed in various ways (by text, by upload or manually).
	o TPI configurator: this page includes the tool for configuring the testbed provider interface.
	 Tools: this menu category includes additional tools that can be used by experimenters (and/or testbed providers), with extra functionalities that are useful but are not mandatory. These functionalities are:
	o Testbed monitoring: this page displays the tool for monitoring the status of the testbeds (for more information see Section 5.3.5).
	o Certification [14]: this link redirects the testbed user to the certification portal of the FIESTA-IoT project, where the testbed providers can get validation for the standardised way their testbeds are integrated in the platform.
	o Reasoning: this is another menu category to be used by experimenters for creating, registering and running rules that can be helpful for their experiments (see Section 5.3.3 for more details).
	 Demo: this menu category includes sample experiment demos that show the full functionality of the FIESTA-IoT platform.
	 Help: this menu category provides several helping pages:
	o About FIESTA-IoT: this is a link to the web-page of the project.
	o Support: this is a link to the support page of the website of the project.
	o Documentation: this is a list of web pages providing the documentation of all tools and functionalities developed by the FIESTA-IoT project.
	o Social Media Resources: this provides links to the youtube channel, and the twitter and slideshare accounts of the FIESTA-IoT project.
	 Create Ticket: this link provides a quick access tool for the users in order to create tickets for asking help by the FIESTA-IoT team or for submitting issues and problems.
	///
	Figure 35: Portal statistics page
	7.1.2.1 Access control / Roles for Menu

	For the FIESTA-IoT portal there are four main access role categories:
	 Registered users
	 Experimenters
	 Testbed providers
	 Administrators
	The portal has been designed to provide different access to the menus and the web pages according to the role of the user. Access is controlled by the usage of a JSON file, with roles, URLs, targets, CSS icon styles, etc. Based on the current logged on user, the data are filtered in the JSON file to disable/enable menu on the portal. Table 11 shows a mapping of the portal menus to the user roles.
	Table 11: Access roles per portal menu
	An example for the controlling of the access to the Testbed provider menu is given below, showing that only the administrator and the testbed provider are allowed access:
	7.2 Usage
	7.2.1.1 Testbeds

	The tools for registering a Testbed, registering resources and managing the testbed interface have been provided in the rest of WP3 and WP4 Deliverables (especially [15], [16]) so will not be described again here to avoid repetition.
	7.2.1.2 Experimenters
	7.2.1.2.1 Create an Experiment

	FIESTA-IoT provides a web tool to create and edit experiments called Experiment Editor. There are a couple of ways to create experiment using the Experiment Editor: one is to create a new experiment, another is to duplicate an existing experiment option.
	To create a new experiment using the Experiment Editor we have to click on the add icon on the rectangular block, as shown in Figure 7, which would then redirect us to the new experiment template. This template can be divided in to three blocks: FEMO, FISMOs and Query. Note that the experiment editor follows the defined FIESTA-IoT experiment DSL.
	/
	Figure 36: Experiment Template FEMO
	The FEMO block contains three fields FEMO Name, FEMO Description and Domain of Interest as shown in the Figure 36. For details on the FEMO we refer the readers to [12].
	A FEMO should have at least one FISMO that is created from the initial template. An experimenter can add multiple FISMOs depending on the experiment requirements by clicking the add icon in the FISMO block. Each created FISMOs are listed in align with the FISMO block and every FISMO comes with two immediate options next to its name, Duplicate FISMO operation and Delete FISMO operation. Duplicating a FISMO would create a new FISMO with the same parameters as the existing FISMO, while clicking on the delete icon would remove that particular FISMO form the FEMO. Note that the changes will not take place unless the save button is clicked.
	/
	Figure 37: Experiment template FISMO
	A FISMO template consists of seven fields, FISMO Name, FISMO Description, Discoverable, Experiment Control, Experiment Output and Widget as shown in Figure 37. For details on the FISMO we refer the readers to [12].
	Every FISMO contains a single Query. The query block contains Quantity Kind, Static Location, Query Interval, and Dynamic Attributes as shown in the Figure 38. For details on the Query Control we refer the readers to [12].
	 /
	Figure 38: Experiment Template Query
	Using the duplicate option in the FEMO block at start of Experiment Editor will result in creating a new experiment with all the FISMO and Queries in the existing experiment.
	7.2.1.2.2 Register new Experiment

	FIESTA-IoT is currently offering a simple interface in order to store, update and delete experiments called Experiment Register Client. This UI is used in case experiment was using FEDSpec based execution and created the FEDSpec using proprietary tool other than Experiment Editor. The Experiment Register Client can be found at the Experimenter menu of the FIESTA-IoT portal (see Figure 39).
	/
	Figure 39: Portal Experimenter Menu
	The Experiment Register Client provides the ability to store an experiment at the FIESTA-IoT platform in the form of a FEDSpec. The defined FEDSpec could be as simple as a single service (FISMO) or as complex as multiple experiments (FEMOs). To upload a FEDSpec first one should identify the location of it by hitting the “Open FEDSpec” (see Figure 40 below) and then by hitting the “Save FEDSpec” button. As soon as the FEDSpec is saved the included FEMOS appears in the available experiments list (FEMOS) as shown in Figure 40. When uploading a FEDSpec the FEMO/FISMO IDs should be empty, as they will be automatically assigned by the system.
	/
	Figure 40: Experiment Register Client
	By choosing a FEMO from the list, the User is capable to have a quick overview of it as shown in Figure 41 below.
	/
	Figure 41: Experiment Register Client - Experiment Browser
	The tools provides also the ability to export a FEMO by hitting the “Export FEDSPEC” button after choosing the FEMO of interest from the provided list. The FEDSpec that will be exported will now contain the FEMO/FISMO IDs assigned from the FIESTA-IoT platform. This will give the Experimenter the ability to update the exported FEMO/FISMO by updating the XML file and saving it again to the Experiment Repository following the same process described above.
	7.2.1.2.3 Execute Experiment

	An experiment can be executed in many ways and FIESTA-IoT provides solutions for the execution of experiment for two categories of users (novice, advanced). Further, for the advanced user case FIESTA-IoT provides 2 solutions: one based on APIs of EEE and another one based on directly accessing IoT-Registry APIs. Novice experimenters are advised to use the method described in this section.
	As said experiment execution is handled by a component called “Experiment execution Engine” or EEE. This module uses and supports the experiment description written by an experimenter in the DSL format specified by FIESTA-IoT (for reference on the DSL refer to [12]). Amongst the available features in the DSL, in the current version, EEE supports only a few. These include starting an experiment service (FISMO), pausing a FISMO, restarting a FISMO, subscribing to already existing and discoverable FISMOs, unsubscribing from subscribed FISMOs, and polling a FISMO (executing one time a FISMO on the FIESTA-IoT platform). The EEE specific APIs are available for developers or experimenters for testing and more in-depth knowledge about specific APIs. Note that in case an experimenter wants to use the EEE API they should still upload the FEDSpec either using the ERM API [12] or the ERM Client. Nevertheless, experimenters can also use Experiment Management Console and perform actions on the FISMO. This option is to be used by novice experimenters.
	In order to execute an experiment using Experiment Management Console that is described by its FISMOs, the Experimenter first need to go to:
	https://platform.fiesta-iot.eu/experimentConsole/experimentConsole.jsp
	You can also use the cookie version of the console by just using the link above. Upon successful authentication, the list of experiments associated with the experimenter or the user is retrieved as shown in Figure 10. Note that this is also available via portal. The experimenter needs to go to the Experimenter Menu and click the “Experiment Management Console”
	From this view, experimenters can then select whichever experiment they want to work on from the list using the “SELECT” button next to each experiment. Once a particular experiment is selected, this would open another UI (as shown from Figure 42 to Figure 44). The entire UI is divided into 3 panes: Experiment Details, Associated FISMOs, and Subscription Pane) where experiment name, experiment description, a list of experiment Domain of Interest along with Associated FISMOs and available FISMOs for subscription is shown.
	An experimenter can choose to update the metadata of the experiment that he/she has created using “EXPERIMENT EDITOR”. This will open the UI provided in Section 5.3.1 where experimenter can resubmit their updated Experiments. Upon these resubmissions, a service in EEE is triggered that changes only the scheduling interval. If the scheduling interval is not changed nothing is updated on the EEE.
	The “Associated FISMOs” pane shows the “meta” information about the FISMOs that are associated to a particular experiment. The “meta” information includes: if the FISMO was Owned or Subscribed within the frame of an experiment, the status of the FISMO (either NOT YET SCHEDULED, NORMAL, PAUSED, etc.), past execution history and polling option. Once scheduled a “delete job” button will appear that will let experimenters delete any reference of a particular FISMO from EEE. Upon deleting the FISMO will not be executed any more. In order to check for the description of the FISMO, experimenter can click on the name. This will open a snackbar in the bottom of the page and will show the description of the selected FISMO.
	Initially, all the FISMOs have the NOT YET SCHEDULED status. If the experimenter wants to start the FISMO, they can switch the toggle button. Upon first toggle, the FISMO will be scheduled by the EEE with the NORMAL status. Another toggle would PAUSE the FISMO execution. Yet another toggle would restart the PAUSED FISMO. In order to successfully schedule the FISMO execution, the current version of the EEE supports all that is specified in Section 3.2.
	A sample of <fed:scheduling> is provided below:
	<fed:scheduling>
	 <fed:startTime>2016-11-08T18:13:51.0Z</fed:startTime>
	 <fed:Periodicity>600</fed:Periodicity>
	 <fed:stopTime>2017-11-08T18:13:50.0Z</fed:stopTime>
	</fed:scheduling>
	The <fed:scheduling> would provide the EEE with the start date, end date and the periodicity of the FISMO execution. Thus making these attributes essential in the FISMO description. Once the schedule is set in the EEE, EEE provides a JOB ID that is used for internal purposes. This JOB ID is then provided with the status NORMAL. Upon the schedule, the <query> is read by the EEE from the FISMO description and is sent to FIESTA-IoT Meta-Cloud. The Meta-Cloud executes the query and sends back the results to the EEE. The EEE stores the result internally and pings the location specified in the location specified by the <fed:experimentOutput> (<fed:experimentOutput location=“location”/>). Upon success, the results are sent to the specified location and deleted from the internal repository. Currently, EEE assumes that the “location” here is a URL, where the specified credentials are granted to the EEE to write the results in a file. For reference and ease, a sample code that experimenters can execute on their server can be found in the following public repository. It is thus noteworthy to state that currently EEE only supports one mechanism right now to send the information to the experimenter. Given the above, it is thus essential to specify <fed:scheduling> <experimentControl> attribute of FISMO, <query> under <prt:query-request> under <fed:queryControl> and <fed:experimentOutput location=“location”>. If the experimenter wants to just execute the FISMO and not to wait for the EEE to trigger the execution of the FISMO, the experimenter can use POLL NOW. The POLL NOW will execute the <query> defined within the FISMO and would return the results to the same URL that is specified (i.e. the URL where results of scheduled execution are being sent).
	/
	Figure 42: Part 1: Experiment Detail Pane
	/
	Figure 43: Part 2: Associated FISMOs Pane
	/
	Figure 44: Part 3: Subscription Pane
	Nonetheless, apart from the above functionality, an experimenter can also subscribe to an already existing FISMO. In case there are many FISMOs available, an experimenter can choose a particular FISMO from the dropdown list and provide the URL information (see Figure 44). Note that as EEE only support URL, experimenters must specify a valid endpoint. Only after validating the experimenter’s URL the “SUBSCRIBE” button will be unlocked. The experimenter can currently only choose one FISMO at a time.
	Once successfully subscribed, the list of Associated FISMOs is updated to show the subscriptions. Each new subscription would provide a new JOB ID where the status of the JOB would be NORMAL to the subscribed FISMO and its execution would begin as the schedule specified in the description of that particular subscribed FISMO (see Figure 43). Moreover, the URL specified in the FISMO will not be used. Instead the URL specified by the subscriber would be used to forward the results. An experimenter, on demand, can unsubscribe the subscribed FISMO by clicking “UNSUBSCRIBE”. This will delete the JOB associated from the EEE.
	An experimenter is also given a capability to see the details of past executions of the “Associated FISMOs”. The details are provided in the form of a graph and contains information like how much time did it take to execute the FISMO and how much data was obtained from the Meta-Cloud. This graph however does not show how much time did it take to execute the FISMO and how much data was obtained from the Meta-Cloud when the FISMO is polled.
	In order to delete the experiment, it is advised that experimenters first stop/delete the execution of any related FISMO objects on the EEE using the EMC. Once this is done, they are advised to remove the experiment from the Experiment Registry Client. We acknowledge this workflow because this will give experimenters a view of what all services are running and if it is really required to remove them at all.
	8 IMPLEMENTATION
	In this section, we provide details of the installation procedures for the different components we have built.
	8.1.1 Source Code Availability

	In the first version of the document [1], we listed that FIESTA-IoT components are available on private Gitlab. Nevertheless, FIESTA-IoT consortium members privately use Gitlab. A public version of the components is also available for the experimenters or testbeds for their use. The public versions of the components are available via Github. Within Github FIESTA-IoT components that are provided are: ontology, TPI, sample experiment and Experiment Data Receiver.
	8.1.2 Components

	All of the described components are maven projects and are deployable within WILDFLY container. The Experiment Data Receiver however is the only component that currently only executes on Tomcat.
	8.1.2.1 Experiment Editor
	8.1.2.1.1 System Requirements

	Table 12 lists the system requirements that are needed to build and deploy the Experiment Editor. Experiment Editor is built using Node. Once the component is successfully deployed its services can be accessed via http://[HOST]:[PORT]/expeditor where [HOST] is the host and [PORT] the port on which the Node is running.
	Table 12: System Requirements for Experiment Editor
	8.1.2.1.2 Dependencies

	The Experiment editor requires certain dependencies that form the core of the component. These include those listed in the Table 13.
	Table 13: Dependencies for Experiment Editor
	8.1.2.1.3 Install and Run

	To install and run the experiment editor, the following steps should be followed in a chronological order. Note that to correctly install the Experiment Editor, no requirements or dependencies should be previously installed, as there might exist configuration issues.
	Install Node JS
	The documentation and package files required for the installation in any system can be found at https://nodejs.org/en/. To install on an Ubuntu machine, use either:
	$ curl –sL https://deb.nodesource.com/setup_6.x | sudo –E bash -
	or
	$ sudo apt-get install -y nodejs
	Install Production Process Manager for Node js ‘PM2’
	PM2 is a production process manager for Node.js applications with a built-in load balancer. It allows applications to be kept alive forever, to reload them without downtime and to facilitate common system admin tasks.To install PM2 use:
	$ npm install pm2 -g
	Setup git access key set
	Generation of the RSA key pair is needed to pull the Expeditor from fiesta-ui.git. Copy the result of public key and send it to the administrator to get access to the server and the key can be added to the ssh trust store. Following is an example of where a sample file can be placed/added
	$ cat ~/.ssh/fiesta.expeditor.git.pub
	Clone and Pull the source from git
	Clone the Experiment Editor source code from git using:
	$ git clone https://thyunkim@bitbucket.org/synctechnoinc/fiesta-ui.git
	Pull the Experiment Editor source code from git using
	$ cd fiesta-ui
	$ git pull
	Installing Required Libraries and Start
	After pulling the code from the git, the required libraries must be installed using:
	$ npm install
	$ bower install
	Start Experiment Editor using
	$ pm2 start npm —name expeditor — start
	Restarting the Experiment Editor
	When code changes, the administrator should first pull from the git and restart pm2 as follows:
	$ git pull
	$ npm install
	$ bower install
	$ pm2 restart expeditor
	Logs
	The log file of the Experiment Editor can be also accessed using
	$ cd ~/.pm2/logs
	$ pm2 logs expeditor
	8.1.2.2 Portal
	8.1.2.2.1 System Requirements

	Table 14 lists the system requirements that are needed to build and deploy the Portal. Once the portal is successfully deployed it can be accessed via http://[HOST]:[PORT]/portalui where [HOST] is the host and [PORT] the port on which the WILDFLY is running.
	Table 14: System Requirements for Portal
	8.1.2.2.2 Dependencies

	The Portal requires certain dependencies that form the core of the component. These include those listed in the Table 15.
	Table 15: Dependencies for Portal
	8.1.2.2.3 Install and Run

	Below are the commands that someone should use to build the portal on the FIESTA-IoT development machine, using maven:
	$./mvnw -DskipTests=true -Pdev clean package
	 For building the portal on a test environment, one should use the command
	$./mvnw -DskipTests=true -Ptest clean package
	For building the portal on the production environment, one should use the command
	$./mvnw -DskipTests=true -Pprod clean package
	For running the portal on any environment. Targeting to be displayed at the “portalui” address, one should use the command
	$ java -jar target/portalui.war
	The portal should be deployed by uploading the portal war file via WILDFLY using Java 8 and WILDFLY 10.0.0 or a later version. The portal also saves logs on the portalui.log file.
	8.1.2.3 Experiment ResultSet Storage
	8.1.2.3.1 System Requirements

	The following Table 16 lists the system requirements that are needed to build and deploy the component on the WILDFLY container. Once the component is successfully deployed its services can be accessed via http://[HOST]:[PORT]/experiment-result-store where [HOST] is the host and [PORT] the port on which WILDFLY is running.
	Table 16: System Requirements for ERS
	8.1.2.3.2 Dependencies

	The Experiment Result Store (ERS) requires certain dependencies that form the core of the component. These include those listed in the Table 17. To know the complete list we redirect the readers to the pom.xml of the component that is made available via:
	https://gitlab.fiesta-iot.eu/platform/core/tree/develop/modules/experiment/ers
	Table 17: Dependencies for ERS
	8.1.2.3.3 Install and Run

	Below we list various steps that need to be performed in order to successfully install the component.
	As the first step one has to setup a schema and table in the MySQL database. The following SQL script can be used to create it:
	CREATE SCHEMA IF NOT EXISTS ers;
	CREATE TABLE IF NOT EXISTS ers.experiments (
	 USER_ID varchar(255),
	 FEMO_ID varchar(255),
	 JOB_ID varchar(255),
	 TIME_STAMP varchar(255),
	 EXPR_RESULT MEDIUMTEXT
);
	The above script to generate the database in the MySQL can be found under the folder /WEB-INF/sql-scripts/create-expr-store.sql.
	Once the database is setup, code properties need to be set up. There are two Properties files under /WEB-INF/config (a) db.properties: dedicated for database connection setting, and (b) global.properties: for global properties (note, this file is substituted with the common properties file (fiesta-iot.properties) for the core platform. The db.properties file consists of following properties:
	The global.properties file consists of following properties:
	Once the above is done, do the following to generate the WAR file:
	$ cd <PATH TO EXPERIMENTRESULTSTORE>
	$ mvn clean install
	Once all these have been set and the WAR file generated, developers can deploy the WAR file on the WILDFLY container. The MySQL server instance should be running before the deployment is done. Once deployed the ERS services can be accessed at http(s)://<HOST>:<PORT>/experiment-result-store where [HOST] is the host and [PORT] the port on which WILDFY container is running.
	8.1.2.1 Experiment Data Receiver

	A sample code is provided for experimenters to receive data provided by EEE.
	8.1.2.1.1 System Requirements

	The following Table 18 lists the system requirements that are needed to build and deploy the component on the experimenter’s side. Once the component is successfully deployed its services can be accessed via http://[HOST]:[PORT]/ExperimentServer/store/ where [HOST] is the host and [PORT] the port that Tomcat uses. The component is tested to be successfully executed on Tomcat.
	Table 18: System Requirements for Data Receiver
	8.1.2.1.2 Dependencies

	The Experiment Data Receiver requires certain dependencies that form the core of the component. These include those listed in the Table 19. (Note we do not list all the dependencies needed. To know the complete list we redirect the readers to the pom.xml of the component that is made available via https://github.com/fiesta-iot/experiment.data.receiver/blob/master/ExperimentServer/pom.xml):
	Table 19: Dependencies for Data Receiver
	8.1.2.1.3 Install and Run

	To deploy, on the experimenter side following has to be done before the deployment
	 in the web.xml change the location entry for multipart-config with the desired location
	<multipart-config>
	<location>#LOCATION#</location>
	</multipart-config>
	 In the
	src/eu/fiesta_iot/experimentServer/ExperimentServerService.java change the $(LOCATION) to match the location set in the web.xml
	File file = new File("${LOCATION}", fileName)
	Note that this location is the desired location where you want to store the received files.
	 Make sure that the #LOCATION# has read-write permissions to the Tomcat user and group (under the name and group Tomcat is running).
	 In the Tomcat server change the following line in the conf/content.xml
	<Context> ... </Context>
	with the following
	 <Context allowCasualMultipartParsing="true">
	...
	</Context>
	 restart Tomcat server
	Once the above is done, do the following
	$ cd <PATH TO EXPERIMENTSERVER>
	$ mvn clean install
	$ cp <PATH TO EXPERIMENTSERVER>/target/ExperimentServer.war <PATH TO TOMCAT WEBAPPS>
	Your service is running at http(s)://<HOST>:<PORT>/ExperimentServer/store/ and thus your URLLOCATION should be http(s)://<HOST>:<PORT>/ExperimentServer/store/
	This will enable you to receive the resultsets that are generated after the execution of your FISMO. As also stated before the name of the file received follows a naming convention. Again, it is:
	String filename = JOBID.replace(“-”,””)+URLLOCATION.replace(":", "").replace("/", "_")+”_”+LONG_TIMESTAMP;
	Note here JOBID is a UUID, URLLOCATION is the location that you provide and LONG_TIMESTAMP is a timestamp in long (milliseconds after epoch).
	If the experimenter is using HTTPS, then they should use LetsEncrypt certificate for this API/URL. All other certificates other than those available in default JVM configuration will fail. This is because of the JVM does not have all the certificates installed. However, if the URL is HTTP, it will pass through
	8.1.2.2 Experiment/Testbed Monitoring Tool

	The Monitoring Tool is based on python and uses a Mongo DB to store data in an edited way. This is done to prepare the data for other analysis and also to visualize it in a proper way.
	As the tool is not running in a WILDFLY container, it will be integrated into the portal via an iframe. For this the nginx server, that is serving the portal, is configured to map the monitoring tool into the namespace of the portal. The configuration also makes sure that it is only available via HTTPS. This integrates it also into the security framework, so that users cannot bypass it.
	8.1.2.2.1 System Requirements

	Following Table 20 list requirements for monitoring tool for the correct execution.
	Table 20: System Requirements for Experiment/Testbed Monitoring Tool
	8.1.2.2.2 Dependencies

	Following Table 21 list python dependencies that are needed for monitoring tool for the correct execution
	Table 21: Dependencies for Experiment/Testbed Monitoring Tool
	8.1.2.2.3 Install and Run

	In the following section, we list all necessary installations and configurations that should be performed.
	 Python and virtualenv creation
	The monitoring tool is based on python and so needs a python environment. This is shipped and preinstalled in all major Linux distributions. As the tool is using several python modules that are installed via pip, a virtualenv is used to isolate the needed modules and to not interfere with the modules that are installed system-wide.
	To create a virtualenv, the package python-virtualenv is needed:
	$ sudo apt install python-virtualenv
	Then the virtualenv can be created:
	$ virtualenv ${HOME}/.virtualenv/testbed-monitoring
	To activate the virtualenv, either it has to be activated or its python binary can be directly used to run a python file.
	$ source ${HOME}/.virtualenv/testbed-monitoring/bin/activate
	The dependencies need to be installed in the virtualenv:
	(testbed-monitoring)$ pip install –r ${TESTBED_MONITORING_HOME}/requirements.txt
	 mongoDB
	The monitoring tool uses a Mongo database in order to store the extracted data in an edited way. The data will be transformed and all not needed parts will be removed.
	To install mongoDB:
	$ sudo apt install mongodb
	 Upstart
	To control the monitoring tool as a service, an upstart script is used. It can be invoked to start and stop the system and also to enable the automatic start of the system.
	The Upstart script that is used:
	description "Testbed Monitoring"
	start on runlevel [2345]
	stop on runlevel [016]
	setuid ubuntu
	setgid ubuntu
	script
	 export HOME=/home/ubuntu
	 cd ${HOME}/fiesta-tools/testbed-monitoring
	 exec ${HOME}/.virtualenv/testbed-monitoring/bin/python run.py
	end script
	The testbed monitoring is installed under /home/Ubuntu/fiesta-tools/testbed-monitoring. The run.py file, which is the start file will be invoked directly with the python binary from the virtualenv.
	 Nginx configuration
	As mentioned before, to enable the monitoring tool to be accessible in the portal, some changes in the nginx configuration are necessary. The monitoring tool is configured to listen to port 4000 for HTTP connections. The basic namespace is /dashboard. So, the nginx configuration needs to map in its HTTPS configuration the /dashboard namespace to the Monitoring tool by using proxying.
	The relevant entry inside of the /etc/nginx/sites-enabled/default file:
	location /dashboard {
	proxy_set_header X-Real-IP $remote_addr;
	proxy_set_header Host $http_host;
	proxy_pass http://127.0.0.1:4000;
	proxy_read_timeout 90;
	}
	It will simply pass all URIs starting with dashboard directly to the Monitoring Tool.
	 Monitoring Tool configuration
	The Testbed Monitoring Tools config file, which can be found under {TESTBED_MONITORING_HOME}/config.yml, is a yaml file, which can be configured in an easy way:
	monitoring:
	 iot_registry: http://localhost:8080/iot-registry/api
	 testbeds_update_time: 120 # minutes
	 sensors_update_time: 120 # minutes
	 observations_update_time: 10 # minutes
	 observation_time_span: 7 # days
	 max_query_span: 1 # days
	web:
	 host: 0.0.0.0
	 port: 4000
	 overall_duration: 1
	db:
	 host: localhost
	 port: 27017
	 db_name: monitoring
	 drop: False
	In the monitoring section the tool itself can be configured, web is for adapting the web server and db is used to configure the access to the mongoDB.
	The monitoring section has the URI to the internal port of the IoT-Registry. The fields *_update_time are to configure the interval of the internal tasks to query the IoT-Registry. The field observation_time_span is to limit the maximum days the Testbed Monitoring Tool will store observations for each sensor. The field max_query_span is used to limit the maximum query range of the IoT-Registry to not ask for too much data.
	9 CONCLUSION
	This is the last deliverable with respect to the tasks within WP4. This deliverable reports advancements done within Task 4.4 and Task 4.5 and updates that were performed to [1]. Via this deliverable, we provide our advancements with respect to how experimenters could create, deploy and manage experiments, giving as well an overview about the FIESTA-IoT portal with respect to experimenters. Note that the portal is not only limited to the tools that are applicable to experimenters but it also supports tools available for testbed owners (some of which are presented in [15]). Further, other user roles defined within FIESTA-IoT framework would also use the FIESTA-IoT portal.
	This deliverable mainly reports issues identified by the reviewers and provides new tools that were developed. Nonetheless, the EEE, EMC and Portal were updated to support new functionalities, APIs and tools to help experimenters achieve their goals. The updates mainly relate to inclusion of new accounting API within EEE, more restricted APIs now being public, and revamped UI for EMC and Portal. Other than the updates to the afore-mentioned tools, within this deliverable, new tools such as: Experiment editor using which experimenters can create configuration/DSL for EEE, Experiment/Testbed monitoring tool using which experimenters can monitor the status of the testbed etc., Experiment Data receiver using which experimenters can receive the resultset, Experiment Result store using which experimenters can download previously available resultset are also reported.
	It is worth mentioning that the provided/discussed tools will be updated on need basis after analyzing the requirements, if any, from the Open Call/other participants. Of course, continuous support, integration and bug fixing will be inevitably part of it. As the tools are also available to public, these tools are well documented and the APIs within are supported by the documentation where the experimenters can possibly execute the APIs if they have the right credentials.
	REFERENCES
	[1] FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing IoT Experiments,” 2017.
	[2] FIESTA-IoT, “Deliverable 2.1: Stakeholders Requirements.”
	[3] FIESTA-IoT, “Deliverable 2.3: Specification of Experiments, Tools and KPIs.”
	[4] FIESTA-IoT, “Deliverable 5.1: Experiments Design and Specification.”
	[5] FIESTA-IoT, “Deliverable 5.2: Experiments Implementation, Integration and Evaluation,” 2017.
	[6] FIESTA-IoT, “Deliverable 3.6: Concept and Development for IoT Data Analytics and IoT Stream and Service Management,” 2017.
	[7] FIESTA-IoT, “Deliverable 4.6: Tools and Techniques for Managing Interoperable Data sets,” 2017.
	[8] FIESTA-IoT, “Deliverable 4.1: EaaS Model Specification and Implementation,” 2016.
	[9] FIESTA-IoT, “Deliverable 2.4: FIESTA-IoT Meta Cloud Architecture,” 2015.
	[10] FIESTA-IoT, “Deliverable 4.4: Authentication, Authorization, Data Protection and Reservation of Resources V2,” 2017.
	[11] A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage Dictionary of the English Language. Boston: Houghton Mifflin, 1992.
	[12] FIESTA-IoT, “Deliverable 4.2: EaaS Model Specification and Implementation,” 2017.
	[13] FIESTA-IoT, “Deliverable 3.1: Semantic models for testbeds, interoperability and mobility support and best practices,” 2016.
	[14] FIESTA-IoT, “Deliverable 6.2: Certification suite V1,” 2017.
	[15] FIESTA-IoT, “Deliverable 3.3: Specification and implementation of common Testbed interfaces,” 2016.
	[16] FIESTA-IoT, “Deliverable 3.4: Specification and implementation of common Testbed interfaces,” 2017.
	Word Bookmarks
	OLE_LINK74
	OLE_LINK75

