
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FIESTA-IoT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any

third party, in whole or in parts, except with prior written consent of the consortium.

HORIZONS 2020 PROGRAMME
Research and Innovation Action – FIRE Initiative

Call Identifier: H2020–ICT–2014–1

Project Number: 643943
Project Acronym: FIESTA-IoT

Project Title: Federated Interoperable Semantic IoT/cloud
Testbeds and Applications

D4.2 EaaS Model Specification and
Implementation V2

Document Id: FIESTAIoT-WP4-D4.2-
EaaS_Model_Specification_and_Implementation-300617-Draft

File Name: FIESTAIoT-WP4-D4.2-
EaaS_Model_Specification_and_Implementation-300617-
Draft.doc

Document reference: Deliverable 4.2
Version: Draft
Editor: Aqeel Kazmi, Martin Serrano
Organisation: NUIG-DERI, Insight Center for Data Analytics
Date: 30 / 06 / 2017
Document type: Deliverable
Dissemination level: PU

Copyright ã 2017 National University of Ireland - NUIG / Coordinator (Ireland), University of
Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en
Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom),
Unparallel Innovation, Lda - UNINNOVA (Portugal), Easy Global Market - EGM (France), NEC Europe
Ltd. NEC (United Kingdom), University of Cantabria UNICAN (Spain), Association Plate-forme
Telecom - Com4innov (France), Research and Education Laboratory in Information Technologies -
Athens Information Technology - AIT (Greece), Sociedad para el desarrollo de Cantabria –
SODERCAN (Spain), Ayuntamiento de Santander – SDR (Spain), Korea Electronics Technology
Institute KETI, (Korea).

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments

V01 Aqeel Kazmi, Hung
Nguyen NUIG 2017/04/20 Initial version with ToC

V02 Ramnath Teja KETI 2017/05/09 Updates to section 6

V03 Aqeel Kazmi NUIG 2017/05/10 Updated ToC as per WP4 partner
suggestions

Luis Sanchez,

Jorge Lanza, David
Gomez

UC 2017/05/16 Contribution to Section 3

 Nikos Kefalakis AIT 2017/05/16
Added Domain Specific Language

(FEDSpec) and Experiment Registry
Management sections

 Rachit Agarwal INRIA 2017/05/17
Defining an Experiment thru DSL,

FAT Integration with FIESTA-IoT.

V07 Aqeel Kazmi NUIG 2017/05/17 Merged various versions.

Luis Sanchez,

Jorge Lanza, David
Gomez

UC 2017/05/17 Contribution to Section 3

Tarek

Elsaleh/Alireza
Ahrabian

UNIS 2017/05/19
Living Lab workflow.

Update of FAT JSON input.

 Ramnath Teja KETI 2017/05/22 Updates to section 6

V08 Aqeel Kazmi NUIG 2017/05/25

Synched all versions. Fixed
references, Added content to section

1, 2, and 8

Ready for QA and TR

 Tiago Teixeira Unparallel 2017/06/20 TR

 Mengxuan Zhao EGM 2017/06/23 QR

 Ronald Steinke FOKUS 2017/06/27 TR

V09 Aqeel Kazmi NUIG 2017/06/27 TR & QR comments addressed in
general & section 1, 2, and 8

 Rachit Agarwal INRIA 2017/06/27 Updates in Section 4.3

 Luis Sanchez UC 2017/06/28 Updates in Section 3

 Ramnath Teja KETI 2017/06/29 Updates in Section 6

 Nikos Kefalakis AIT 2017/06/29 Updates in Section 4 & 5

V10 Aqeel Kazmi NUIG 2017/06/30
Synched all V09 documents, Re-

arranged references, Preparing draft
for EC submission

Draft Aqeel Kazmi NUIG 2017/06/30 Accepted all changes, Comments
removed, draft ready for submission

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 2

TABLE OF CONTENTS

1 INTRODUCTION .. 7
1.1 EXECUTIVE SUMMARY ... 7
1.2 AUDIENCE ... 8
1.3 STRUCTURE .. 8
1.4 UPDATES FROM THE PREVIOUS VERSION ... 9

2 EAAS MODEL PLACEMENT WITHIN FIESTA-IOT .. 10
3 FIESTA-IOT META-CLOUD ... 12

3.1 IOT-REGISTRY ARCHITECTURE ... 12
3.2 IOT-REGISTRY COMPONENTS DESCRIPTION .. 13

3.2.1 Semantic data model .. 14
3.2.2 Storage structure of the TDB .. 14
3.2.3 Data Endpoint ... 16
3.2.4 Resource Manager .. 17
3.2.5 Testbed agnostic namespace transformation ... 17
3.2.6 Resource Broker ... 18

3.3 PROTOTYPE IMPLEMENTATION AND DEPLOYMENT .. 19
3.3.1 Source code availability and structure .. 19
3.3.2 Component deployment .. 20

3.3.2.1 System Requirements .. 20
3.3.2.2 Install & Run ... 20
3.3.2.3 API Usage .. 21
3.3.2.4 Containers and Libraries .. 21

4 DOMAIN SPECIFIC LUNGUAGE MODEL .. 22
4.1 OVERVIEW .. 22
4.2 FIESTA-IOT EXPERIMENT MODEL OBJECT (FEDSPEC) .. 22
4.3 DEFINING AN EXPERIMENT THROUGH DOMAIN SPECIFICATION LANGUAGE (DSL) 28

5 EXPERIMENT REGISTRY MANAGEMENT (ERM) ... 36
5.1 API DEFINITION ... 36

5.1.1 Object Definition .. 40
5.2 EXCEPTIONS ... 41
5.3 PROTOTYPE IMPLEMENTATION ... 44

5.3.1 Design ... 44
5.3.2 Source code Availability and Structure ... 44

5.3.2.1 System Requirements .. 45
5.3.2.2 Install & Run ... 45
5.3.2.3 API Usage .. 46
5.3.2.4 Containers and Libraries .. 46

5.4 ERM UI CLIENT .. 47
5.4.1 Register a new experiment ... 47

6 EXPERIMENT MODELLING ENGINE (EME) .. 49
6.1 NODE RED ... 49
6.2 EXPERIMENT OPERATION FLOWS ... 52
6.3 INSTALLATION ... 54

7 EXPERIMENT WORKFLOW .. 56
7.1 EXPERIMENT WORKFLOW .. 56
7.2 FIESTA-IOT ANALYTICS TOOLKIT INTEGRATION WITH EEE. ... 58
7.3 LIVING LAB EXPERIMENTS .. 60

8 CONCLUSIONS ... 64
REFERENCES ... 65

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 3

APPENDIX I- DEFINED SCHEMATA .. 66
APPENDIX II- EXPERIMENT FEDSPEC ... 71

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 4

LIST OF FIGURES
FIGURE 1. FIESTA-IOT PLATFORM ARCHITECTURAL OVERVIEW ... 10
FIGURE 2. IOT-REGISTRY INTERNAL ARCHITECTURE .. 13
FIGURE 3. IOT-REGISTRY TDB INTERNAL STRUCTURE ... 14
FIGURE 4. (A) RESOURCE DESCRIPTION ANNOTATION EXAMPLE. (B) OBSERVATION ANNOTATION EXAMPLE ... 16
FIGURE 5. URI NAMESPACE TRANSFORMATION FLOW DIAGRAM .. 18
FIGURE 6. FEDSPEC SCHEMA GRAPH .. 22
FIGURE 7. FISMO SCHEMA GRAPH .. 23
FIGURE 8. EXPERIMENT CONTROL SCHEMA GRAPH ... 24
FIGURE 9. EXPERIMENT OUTPUT SCHEMA GRAPH ... 25
FIGURE 10. QUERY CONTROL SCHEMA GRAPH ... 26
FIGURE 11. DYNAMIC ATTRIBUTES SCHEMA GRAPH .. 27
FIGURE 12. RULE SCHEMA GRAPH ... 28
FIGURE 13. EXPERIMENT DESCRIPTIVE IDS SCHEMA GRAPH. ... 41
FIGURE 14 ERM RELATIONAL DATABASE SCHEMA. .. 44
FIGURE 15. PORTAL EXPERIMENTER MENU .. 47
FIGURE 16. EXPERIMENT REGISTER CLIENT ... 48
FIGURE 17. EXPERIMENT REGISTER CLIENT - EXPERIMENT BROWSER ... 48
FIGURE 18. SERVICE NODE ... 50
FIGURE 19. FEMO NODE .. 51
FIGURE 20. FISMO NODE ... 52
FIGURE 21. SAVE USER EXPERIMENT FLOWS ... 53
FIGURE 22. SAVE EXPERIMENT SERVICE MODEL OBJECT FLOWS .. 53
FIGURE 23. EXPERIMENT WORKFLOW .. 56
FIGURE 24. REQUEST BODY JSON OBJECT ... 59
FIGURE 25. LIVING LAB METHODOLOGY CYCLE .. 61
FIGURE 26. EXPERIMENT STAKEHOLDER MODEL .. 61
FIGURE 27. EXPERIMENT WORKFLOW FOR ALERTS ... 63
FIGURE 28. EXPERIMENT WORKFLOW FOR HYPOTHESIS ... 63

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 5

LIST OF TABLES

TABLE 1 CONTAINERS AND LIBRARIES USED FOR THE PROTOTYPE IMPLEMENTATION 21
TABLE 2. LIST OF PRIMITIVES COMPRISING THE EXPERIMENT REGISTRY MANAGEMENT API 36
TABLE 3. EXPERIMENT REGISTRY MANAGEMENT API DEFINITION ... 36
TABLE 4. EXPERIMENT REGISTRY MANAGEMENT API USAGE .. 37
TABLE 5 EXCEPTIONS ASSOCIATED WITH THE EXPERIMENT REGISTRY MANAGEMENT API 41
TABLE 6 EXCEPTIONS THROWN BY THE DIFFERENT EXPERIMENT REGISTRY MANAGEMENT SERVICES 43
TABLE 7 CONTAINERS AND LIBRARIES USED FOR THE PROTOTYPE IMPLEMENTATION 46
TABLE 8 FLOWS FOR SERVICE NODE'S SERVICES ... 54
TABLE 9. FEDSPEC SCHEMA ... 66
TABLE 10: DESCRIPTIVE IDS SCHEMA .. 70
TABLE 11: COMPLETE VALID FEDSPEC EXAMPLE .. 71

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 6

TERMS AND ACRONYMS

API Application Programmable Interface
DSL Domain Specific Language
EaaS Experiment as a Service
EEE Experiment Execution Engine
ERM Experiment Registry Management
FAT FIESTA-IoT Analytics Toolkit

FEDSpec FIESTA-IoT Experiment Model Object
FEMO FIESTA-IoT Experiment Model Objects
FIRE Future Internet Research & Experimentation

FISMO FIESTA-IoT Service Model Object
IoT Internet of Things
RB Resource Broker
RM Resource Manager
TDB Triplestore DataBase

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 7

1 INTRODUCTION

1.1 Executive Summary

In FIESTA-IoT, Experimentation as a Service (EaaS) model refers to a new and
innovative way of allowing researchers and experimenters to define and execute
data-intensive experiments on top of heterogeneous set of IoT testbeds. This is
enabled by aggregating data streams and services from multiple IoT platforms (or
testbeds) using a common data model namely FIESTA-IoT ontology. Having ensured
the interoperability among multiple testbeds, the data and services are made
available only in a testbed-agnostic manner which allows the experimenters to
conduct testbed-agnostic experiments. In FIESTA-IoT we interpret the EaaS model
as assisting experimenters and developers in designing interoperable IoT
applications, more precisely, by semantically annotating data, deducing meaningful
knowledge from sensor data, combining applicative domains to build smarter IoT
applications and experiments.
This deliverable is dedicated to the specification and implementation of the EaaS
model, as required in order to facilitate the researchers, experimenters, and
developers to define and execute IoT testbed-agnostic experiments. The EaaS
specification is driven by a number of requirements, including the need for specifying
the modelling language for modelling experiments associated with IoT data and
resources along with tools for specifying, parsing and enacting this language, the
experiment workflow that describes the process followed by an experimenter to
create and execute an experiment, and the Meta-Cloud framework methodology. The
review of complementary techniques and concepts, such as interoperability of
services, Domain Specific Languages (DSL) and data workflows, that led to the EaaS
model specification have been included in the first version of the deliverable [7] and
therefore not in this document in order to avoid repetition.
In order to support the EaaS innovative concept in FIESTA-IoT, the Meta-Cloud
architecture and its implementation have been carried out. The use of the Meta-
Cloud is explained through the experiment and data workflows. The Meta-Cloud is
employing the EaaS model, a cornerstone component which has been designed and
implemented as a Domain Specific Language (DSL). This implementation is called
FIESTA-IoT Experiment Description Specification (FEDSpec) and is capable of
hosting all the defined experiments of a specific experimenter. The Experiment
Registry Management (ERM) tool (UI & API) has been designed and implemented
that allows experimenters to easily manage and interact with FEDSpec. An API has
been designed to deal and easily interact with the EaaS Model. The integration
workflow of the FIESTA-IoT Analytics Toolkit (FAT) and Experiment Execution
Engine (EEE) is specified. In addition, a concrete use case namely the LivingLab
experiment is implemented. Additionally, this deliverable presents and discusses the
work carried out in order to support Node-RED for automatically generating
experiment FEDSpec. Node-RED allows experiment modelling by using its visual
programming nature.
This deliverable satisfies and fulfils a number of both functional and non-functional
requirements specified in deliverable 2.1 [2]. In particular, it meets the requirements
related to discovery of IoT resources and observations, ways to retrieve sensor
streams, integration of multifarious IoT resources, and specification of experiments.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 8

1.2 Audience

This document addresses the following audiences:
• Researchers and engineers within the FIESTA-IoT consortium will take

into account various requirements in order to research, design and implement
the APIs needed to support Testbeds associated to the FIESTA-IoT Platform.

• Experiment owners who wish to join FIESTA-IoT will be able to understand
how and what IoT data is stored within the FIESTA-IoT Meta-Cloud and thus
would be able to align their experiments that could utilize such data.  

• Researchers on Future Internet Research and Experimentation (FIRE)
focusing on semantically storing data produced by their experiments will
find guidelines to store data produced by their experiments in a semantic
manner either in their own repository or utilizing the FIESTA-IoT platform.

• Members of other Internet of Things (IoT) communities and projects
(such as projects of the IERC cluster) can take this document as an initial
reference or inspiration to design and implement their own Testbed that also
stores data that is semantically annotated.  

• Open Call participants will be able to understand better the technical details
needed for them to join and work with the FIESTA-IoT platform.  

• Standardization bodies will have access to this deliverable as it will be a
public document and therefore the specifications and tools developed can be
standardized following the involvement and reach a wider adoption.

1.3 Structure

In addition to the introductory section, the deliverable is structured as follows:

• Section 2 provides an overview of the EaaS model. It then provides the
placement of the EaaS model within the FIESTA-IoT architecture.

• Section 3 provides the implementation details of core components of the
FIESTA-IoT Meta-Cloud a.k.a IoT-Registry, which is the core of the FIESTA-
IoT platform.

• Section 4 describes the FIESTA-IoT experiment management that is
facilitated by the usage of a Domain Specific language (DSL) which is capable
of hosting all the experiments of a specific user.

• Section 5 focuses on the Experiment Registry Management (ERM)
component that facilitates the experiment storage, retrieval and discovery.

• Section 6 provides details on automatically generating the experiment DSL
using Node-RED tool.

• Section 7 focuses on the integration of FIESTA-IoT Analytics Toolkit (FAT)
component in FIESTA-IoT platform. In addition, it describes the Living Lab
Experiment.

• Section 8 finally concludes this deliverable.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 9

1.4 Updates from the previous version

This deliverable is the second and final iteration of Deliverable D4.1 [7]. It reflects the
updates to the EaaS model and related tools with respect to D4.1. These updates are
summarized below:

• Introductory sections regarding FIESTA-IoT scope and WP4 overview have
been removed in order not to repeat the content.

• The section regarding background technologies and related work has been
removed since there were no updates.

• New section on EaaS model placement and description is added to set the
context of work presented in this deliverable.

• FIESTA-IoT Meta-Cloud section has been updated with new content that
describes the architecture and implementation of the internals of IoT Registry.

• EaaS Model section has been updated with details over the latest version of
FEDSpec.

• Experiment Registry Management section is updated and details are provided
about the latest functionalities that have been implemented since previous
version of the deliverable.

• Section 6 contains updates over the automatic generation of DSL using the
Node-RED tool.	

• Experiment workflow section contains details about FIESTA-IoT Analytics
Toolkit integration with EEE. In addition, the LivingLab experiment is
presented and discussed.	

• Finally, the conclusion section is updated in order to reflect the changes made
in this deliverable.	

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 10

2 EAAS MODEL PLACEMENT WITHIN FIESTA-IOT

The purpose of the EaaS model is to facilitate testbed-agnostic access to data
streams and services. The EaaS model consists of a number of concepts (tools)
developed within the FIESTA-IoT infrastructure. The core elements include the
FIESTA-IoT Meta-Cloud (IoT-Registry), experiment modelling language (FEDSpec),
and the Experiment Registry Management (ERM). In addition, it includes the
specification of experiment workflow and Node-RED integration for automatically
generating experiment DSLs.

Figure 1. FIESTA-IoT Platform Architectural Overview

The IoT Registry (FEISTA-IoT Meta-Cloud), as this can be seen in Figure 1 above, is
the main component within the FEISTA-IoT infrastructure. The main function of IoT

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 11

registry is to store and maintain all the information e.g. the resource descriptions and
observations provided by the integrated testbeds. This information is accessible by
the experimenter directly via the API that IoT registry has exposed or through
creating and executing an experiment. The ideal workflow is that the experimenter
defines an experiment using the FEDSpec model then registers and stores this
experiment using the Experiment Registry Management (ERM) tool. The Experiment
Management Console (EMC) component is used by an experimenter to see details of
an experiment and change the status e.g. start, stop or schedule. The Experiment
Execution Engine (EEE) executes the experiment as per its schedule and parameters
specified in FEDSpec. Finally, the results are returned (to a specified location) after
the successful execution of an experiment. This whole process (experiment workflow)
is provided and discussed in section 7.1.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 12

3 FIESTA-IOT META-CLOUD

In the previous version of the deliverable [7], the abstract methodology and
architecture to implement the FIESTA-IoT Meta-Cloud was described. In this version,
the implementation of the core components identified will be described. Indeed, the
actual implementation of these components is the core of the FIESTA-IoT platform
that is currently running and supporting the experimentation and integration of
testbeds that is ongoing nowadays.
Among the identified functional components, the following ones have been
implemented within a single software development so called IoT-Registry:

• Query engine enables to query a subset of data that we are interested in. A
SPARQL query engine is used, the one available within the Jena framework. It
corresponds to the Querying step from SEG 3.0 [7].

• Meta-cloud data endpoint will provide access to semantically annotated data
(e.g., SPARQL endpoint, web services).

• Registry enables registering a new resource, testbed or service. It is included
within the Service step from SEG 3.0.

• Discovery enables discovering already registered resources, testbeds or
services. It is included within the Service step from SEG 3.0.

• Repositories. They are the actual placeholders where the semantic triples
representing the resources and observations are stored.

In the remaining of the chapter we provide a detailed overview of the internals of the
IoT-Registry which complements the description of the services and APIs that it
exports, which are thoroughly described in [9] and [1].

3.1 IoT-Registry architecture

The IoT-Registry’s main function is to keep and maintain all the (semantic) resource
descriptions and observations which the underlying testbeds, federated within
FIESTA-IoT, have provided. On top of this “collector” behaviour, we have built a fully-
fledged REST API that allows the interplay between users (FIESTA-IoT admins,
testbed providers, experimenters or observers) and the databases that store the
information. Below we describe every single feature carried out by this key module.
Figure 2 below shows the internal architecture of the implemented IoT-Registry.
The core of the component is formed by the Triplestore Database (TDB) that
provides the storage capacity for aggregating the Resource Descriptions from the
devices belonging to the federated testbeds as well as the Observations that these
devices are constantly producing. Both the Resource Descriptions and the
Observations are semantic documents that uses RDF serialization to describe them.
In this sense, the TDB implements the information model that is specified by the
FIESTA-IoT ontology [4], [5], and [13].
However, this is only the repository part of the component and the actual intelligence
of the module is implemented on the other sub-systems. The first of these functional
modules is the Data Endpoint which is the responsible for exporting the SPARQL
endpoint of the TDB into a web-based API. It, thus, mainly acts as a proxy getting the

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 13

SPARQL queries that are carried into the body of the HTTP requests, injecting them
into the native SPARQL endpoint of the TDB and getting back the corresponding
response within the HTTP response packet.

Figure 2. IoT-Registry internal architecture

The remaining two components, namely the Resource Manager (RM) and the
Resource Broker (RB), are the ones that transform the IoT-Registry from a regular
Semantic Datastrore into an enabler of the Web of Things paradigm. In this sense,
the two key concepts behind this behaviour is the testbed-agnostic nature of the
FIESTA-IoT platform and the service-oriented character of the IoT ARM [3] which
underlies all the FIESTA-IoT Platform architecture. In this sense, the key idea is that
the services exposing the resources from the underlying testbeds can be accessed
using a truly web-oriented style. For this to happen, the IoT-Registry firstly
“impersonates” the underlying resources (meaning that it exports a homogenized URI
under the FIESTA-IoT domain namespace) for each of the federated testbeds and
afterwards, provides a brokering mechanism that enables unified and proxied access
to the underlying resources and the service endpoints that are used to expose them.

3.2 IoT-Registry components description

This section describes in detail the main insights from the implementation of the
different modules that comprises the IoT-Registry.

Triplestore Database
(TDB)

Data endpoint

Resource Manager

Resource Broker

Experimenters

IoT testbed #NIoT testbed #1

...

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 14

3.2.1 Semantic data model

As for the semantic information compatible with this module, it is worth referring to [5]
to get a clear reference to what kind of datasets the IoT-Registry has to deal with.
Based on the acquaintance achieved with the analysis of the in-house testbeds,
together with the support of some of the most well-known off-the-shelf ontologies on
Sensor Networks, such as SSN1 (Semantic Sensor Network), we gave rise to the
FIESTA-IoT ontology2, tailored to span various IoT domains, e.g. Smart Cities, Smart
Building, Smart Health Care or Smart Agriculture, just to cite a few.
This data model is loaded when the IoT-Registry is deployed at the application
server. The model underlies all the semantic features offered by the IoT-Registry
such as the query engine, internal validation of triples and documents, etc.

3.2.2 Storage structure of the TDB

As it has been previously mentioned, the information that is stored at the FIESTA-IoT
Meta-Cloud relates to two different, but tightly bound, realms. On the one hand, the
descriptions of the resources that form the underlying testbeds (i.e. the IoT devices)
and, on the other hand, the observations made by that sensors3.
Similarly, the internal structure of the TDB follows a similar approach. In this sense,
the implementation of the Jena-based query engine has two different graphs that are
virtually merged into a third one, as can be seen in Figure 3 below.

Figure 3. IoT-Registry TDB internal structure

The resources and observations graphs store respectively the resource descriptions
of the IoT devices and the observations that they generate.
As it can be seen in Figure 4 below, the linked graphs that the instances of each of
these items form, are mostly independent and, indeed, can be queried individually if
the experimenter is interested only on information related to one of them. For
example, the experimenter can perfectly look for the Service that is exposing any of
the IoT devices using the typical what (i.e. physical phenomenon observed) and
where (i.e. location) discovery criteria. For this search, only the resources graph

1 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
2 http://ontology.fiesta-iot.eu/ontologyDocs/fiesta-iot/doc
3 At the time of writing this document, testbeds only provide sensor-based assets. Nonetheless, in
case new platform came with different devices (e.g. actuators or tags), the ontology would be modified
in order to foster these new elements.

global

resources observations

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 15

should be explored by the query engine, thus, optimizing the discovery and access
performance. A similar example can be imagined if the experimenter is interested on
the data contained on the actual measurements collected by the sensors at the
underlying testbeds as they are also self-contained in terms of geo-location,
timestamp and phenomenon observed.
However, in the cases on which the experimenter is looking for extra information
about the IoT device that has produced a measurement (e.g. coverage, accuracy,
sensing procedure or other metadata), this information can only be obtained from the
resources graph and if the two graphs weren’t virtually bound, the experimenter
would have to execute two different queries against each of the two graphs. The
solution adopted caters for the flexibility of allowing optimized queries when they
target only one of the graphs but at the same time allows more complex queries
targeting information from both of them.

(a)

geo:Location

ssn:onPlatform

ss
n:

ha
sD

ep
lo

ym
en

t

ssn:hasSubsystem

ssn:Deployment

SmartSantanderTestbed

ssn:Platform

<platform.urn>
platform.urn.x-iot.smartsantander.u7jcfa.t3230

geo:Point

<location.urn>
location.urn.x-iot.smartsantander.u7jcfa.t3230

• geo:lat = 43.46769^^xsd:float
• geo:long = -3.81217^^xsd:float

ssn:System / ssn:Device

<urn>
urn.x-iot.smartsantander.u7jcfa.t3230

iot-lite:hasUnitiot-lite:hasQuantityKind

iot-lite:exposedBy

ssn:SensingDevice
m3-lite:AirThermometer

<urn.m3-lite:QuantityKind.Sensor>
urn:x-iot:smartsantander:u7jcfa:t3230.AirTemperature.Sensor

iot-lite:Service

<service.urn.m3-lite:QuantityKind.Sensor>
service.urn:x-iot:smartsantander:u7jcfa:t3230.AirTemperature.Sensor

• iot-lite:type = “REST”^^xsd:string
• iot-lite:endpoint = “https://api.smartsantander.eu/v2/measurements/temperature:ambient/

urn/urn:x-iot:smartsantander:u7jcfa:t3230/last?format=jsonld”^^xsd:anyURI

m3-lite:DegreeCelsiusm3-lite:AirTemperature

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 16

(b)

Figure 4. (a) Resource description annotation example. (b) Observation
annotation example

3.2.3 Data Endpoint

SPARQL is known to be the most common and widely used RDF query language.
Therefore, it is sensible to offer a fully-fledged SPARQL interface, as part of the
IoT-Registry module that allows this kind of semantic queries on the FIESTA-IoT
platform. The Data Endpoint (DE) module implements this functionally by enabling a
direct SPARQL endpoint.
The DE is a conformant SPARQL protocol service as defined in the SPARQL
Protocol for RDF (SPROT). It allows users to query a knowledge base via the
SPARQL language. Results are returned in any of the common data representation
formats, namely JSON, XML, CSV, etc.
The default endpoint runs the query on the “global” graph, including both Resources
and the linked Observations. However, it is also possible to limit the scope of the
query to just the Resources or the Observations graph by identifying the graph in the
request URL.
Moreover, it also offers a system for the storage of queries so that its execution can
be programed without having to include the complete SPARQL sentence at every
request. This additional functionality would make it easier to share knowledge
between experimenters or testbeds and smooth the learning curve when it comes to
cope with the FIESTA-IoT ontology and its underlying dataset representation.
Finally, an additional functionality has been added to the DE so that the stored
SPARQL queries can be dynamically adapted and used as templates rather than as
static queries. To achieve such a feature, the REST API wrapping the DE allows for

geo:Location

ss
n:

ob
se

rv
ed

By

ssn:observationSamplingTime

ssn:observationResult

ssn:observationProperty

ssn:hasValue
iot-lite:hasU

nit

ssn:Observation

<urn>
urn.x-iot.smartsantander.u7jcfa.t3230

m3-lite:AirTemperature

ssn:SensingDevice

<urn.m3-lite:QuantityKind.Sensor>
urn:x-iot:smartsantander:u7jcfa:t3230.AirTemperature.Sensor

geo:Point

• geo:lat = 43.46769^^xsd:float
• geo:long = -3.81217^^xsd:float

m3-lite:DegreeCelsius

ssn:ObservationValue

• dul:hasDataValue = “9.95”^^xsd:float

ssn:SensorOuput

dul:TimeInterval

• dul:hasIntervalDate = “Tue Mar 08 2016 18:41:40 GMT+0100 (CET)”^^xsd:dateTime

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 17

some variables to be replaced with input parameters in the GET/POST requests
based on a set of conventions. The syntax is based on a proprietary defined
wildcard: %%%, that will never appear in a regular SPARQL query, which delimits a
parameter name. Then, by adding the parameter as a URL query parameter, the
assigned value will replace it before executing the query.
This feature has been added with a twofold objective. On the one hand, it promotes
sharing queries, thus giving rise to a sort of “crowd-sourced” catalogue. Moreover, it
enables the creation of optimized queries resolving recurrent demands from
experimenters. This way it will be possible to create a “best-practices” catalogue
open to experimenters. On the other hand, this option reduces the overhead and
eases the action of executing multiple times the same SPARQL sentence as caching
can be used to enhance the query engine performance.

3.2.4 Resource Manager

The Resource Manager (RM) exposes the single-entry point for all the testbeds to
register their IoT Resources’ descriptions. Its main role is to homogenize the
descriptions received from the different testbeds. After syntactically checking the
annotated descriptions and guaranteeing that they are compliant with the
FIESTA-IoT ontology, the RM transforms the URI for all the resource descriptions in
order to make them belong to the FIESTA-IoT namespace. This process basically
consists of overwriting the bindings that points to the original testbeds’ domains
included in the annotated resource descriptions. These bindings are transformed to
the common meta-platform domain so that every entity identifier and/or IoT Service
endpoint, independently of which testbed they belong to, are exposed as if they
belonged to a unique graph, namely the federation graph.
Therefore all the semantically annotated descriptions generated by the testbeds are
stored in the Triplestore Database following the testbed agnostic paradigm followed
within FIESTA-IoT. Once the necessary adaptations to the resource descriptions
have been done and internally recorded for future use by the RB, the RM stores them
into the TDB.
While the communication interface between the RM and the TDB will be based on
semantic requests, the interface with the testbeds is based on standard HTTP
encapsulating semantically annotated documents.

3.2.5 Testbed agnostic namespace transformation

One of the key objectives for the whole FIESTA-IoT project is to specify and
implement techniques for testbed agnostic access to data sets stemming from
multiple heterogeneous IoT platforms. The IoT-Registry is at the core of these
techniques and there is a particular procedure executed within the RM that serves
towards this objective.
When any of the federated testbeds register their IoT devices or send their
observations to the IoT-Registry for storage, the triples of the annotated documents
that represent them are bound to the respective namespace of the testbed through
the URI that identifies each of the nodes in the graph (e.g. http://smart-
ics.ee.surrey.ac.uk/fiesta-iot/deployment#smart-ics,
http://iotocean.org/ontologies/ketiOntology.owl#fil_510.co2,
http://api.smartsantander.eu#ft4cev:t5115.fillLevel-wasteContainer.obs-1375, etc.).

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 18

Keeping this kind of URIs would go against the testbed agnostic nature that is
expected from FIESTA-IoT platform. Moreover, as it will be presented when
describing the insights of the Resource Broker (RB), keeping the original
namespaces of the underlying testbeds would make impossible the realization of a
true Web of Things which is another key objective of the IoT-Registry.

Figure 5. URI namespace transformation flow diagram

Figure 5 above shows the process implemented within the RM for the transformation
of the URIs for all the nodes stored at the TDB graph database.

1. The original URI is appended (actually additional characters are added as
prefixes of the original URI) with a Cyclic Redundancy Check (CRC) and an
integer which represents the node type (0 if the node is a testbed, 1 if the
node is an observation, and 2 for the rest).

2. The resulting string is hashed using AES-128 block-cypher.
3. The resulting byte array is transformed to base64 representation.
4. The resulting string is appended to the corresponding FIESTA-IoT namespace

resulting in the corresponding transformed URI.
For example, the resulting transformed URI for one of the testbeds original URI
(http://api.smartsantander.eu#SmartSantanderTestbed) is
https://platform.fiesta-iot.eu/iot-registry/api/testbeds/a1yp9GcKEPw37Bx5r
slgRI4QLSNCwEwBatCIOe_W0dHZCmzj2WmkExz3qoNuvWg1pueAXn1Li0JrNjvBiQwV3Q==.

3.2.6 Resource Broker

Apart from the direct extraction of data from the TDB through the DE by executing
SPARQL queries, the FIESTA-IoT platform also supports the access to the services
that directly expose the underlying IoT devices. In this sense, the FIESTA-IoT
ontology allows the option4 for testbed providers to include, within the resource

4 Despite being part of the semantic data model (i.e. ontology), devices do not have to include a
linkable endpoint through which experimenters might get data from.

Original URI CRC calculation

Node Type

AES-128 base64 transformation

FIESTA-IoT
namespace

Transformed
URI

1

1

1

2 3

4

4

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 19

description of their IoT devices, information about the Services that expose this IoT
device.
However, for the experimenter that makes use of FIESTA-IoT Platform to carry out
an experiment that uses these services, accessing them directly on their original
testbed would require an extra effort (i.e. for understanding each testbed internal
mechanisms). Moreover, this would break the testbed agnostic paradigm that
FIESTA-IoT has as one of its main objectives.
The Resource Broker is the component in charge of enabling the access to IoT
devices’ Services while keeping the testbed agnostic nature of FIESTA-IoT and also
homogenizing the way of accessing them for the experimenter.
As it has been described in the previous section, graph nodes URIs are transformed
for them to belong to the unified FIESTA-IoT namespace. This transformation makes
the service endpoint to target the FIESTA-IoT namespace and more specifically the
IoT-Registry. The RB intercepts the requests made to the transformed URIs and
forwards it to the corresponding testbed endpoint. This process is carried out
internally at the RB so that for the experimenter it is completely transparent and it
gets the service result without having to care about the specific testbed requirements.
In this respect, it is the RB the one that is implemented to deal with that specific
requirements imposed by each of the underlying testbeds.

3.3 Prototype implementation and deployment

In this section we provide an installation and basic implementation description of the
IoT-Registry. At this point, it is worth to mention that although the specification of the
APIs offered by the IoT-Registry have been described in [9]. Moreover, although IoT-
Registry implementation is in a mature state, as the project evolves the
implementations and APIs will evolve as well. This is why FIESTA-IoT consortium
has authored a Handbook [1] that is a “living document” and will get updated as the
platform evolves. This Handbook is a public document which is offered to the
FIESTA-IoT platform users.

3.3.1 Source code availability and structure

The IoT-Registry component is offered at FIESTA-IoT GitLab repository which is
named “IoT-Registry” and is available at: https://gitlab.fiesta-iot.eu/platform/iot-
registry. The latest version of the components is under the “develop branch”5 .
The repository is organized in 3 categories/folders and the IoT-Registry component is
placed as follows:

• conf: provides all the necessary configuration parameters.
• raml: provides the on-line documentation of the IoT-Registry APIs
• src/main: contains the source code for the different building blocks of the IoT-

Registry

5 https://gitlab.fiesta-iot.eu/platform/iot-registry/tree/develop

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 20

3.3.2 Component deployment

A detailed installation and deployment guide for this component is available at the
FIESTA-IoT GitLab. In the following subsections, we will summarize the main aspects
to be taken into account for the deployment of the IoT-Registry.

3.3.2.1 System Requirements

The IoT-Registry component is deployed within a WildFly container and use Maven
for project management. In order to run the prototype, you need to ensure that Java
8 and WildFly are installed and/or available on your system. In order to build the
prototype you will also need Maven. Before attempting to deploy and run the
prototype applications, make sure that you have started WildFly.
Additionally, IoT-Registry uses an internal MySQL database for the persistence of the
SPARQL queries. This additional feature of the DE module, enables storing of the
queries to be passed to the Jena-based engine.
More details about the specific versions of the tools and libraries that have been used
for the development or that are required for the deployment and execution of the
prototype are given in the section below.

3.3.2.2 Install & Run

The prototype has been implemented as a Maven-based web application. Below
WILDFLY_HOME indicates the root directory of the WildFly distribution, and
PROJECT_HOME indicates the root directory of the project.
In order to configure the prototype,

1. make sure that all properties listed in
$PROJECT_HOME/src/main/resources/fiesta-iot.properties have the
appropriate values,

2. copy that file into $WILDFLY_HOME/standalone/configuration, and
3. issue the following commands:

In order to build the prototype, run the following command in PROJECT_HOME:
mvn clean package

Finally, in order to deploy the prototype, run the following command in
PROJECT_HOME:
mvn initialize wildfly:deploy

The last step assumes that WildFly is already running on the machine where you run
the command.
Alternatively copy the produced (from the build process above) iot-registry.war file
from the target directory ($PROJECT_HOME/target/), into the
standalone/deployments directory of the WildFly 6 distribution, in order to be
automatically deployed.

6 http://wildfly.org/

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 21

If the deployment has been successfully completed, you will be able to access all
web services described in the section above using the following URL:
http://[HOST]:[PORT]/iot-registry/api

Where [HOST] is the host and [PORT] the port that WildFly uses.

3.3.2.3 API Usage

The details about the usage of the IoT-Registry offered APIs is described in [9]
together with the explanation on how to discover and access to the interoperable
datasets stored at the IoT-Registry in a testbed agnostic manner.
In any case, on-line documentation is available on https://platform.fiesta-iot.eu/iot-
registry/docs/api.html.

3.3.2.4 Containers and Libraries

Table 1 below lists the containers and libraries that have been used for the
implementation of the prototype. The versions specified in the table are the ones that
have been used during the development.

Table 1 Containers and libraries used for the prototype implementation
Container / Library /
Framework

Version

WildFly 10.0.0.Final

Java Platform, Standard Edition 1.8.0_25

Maven 3.1.1

fiesta-commons 0.0.1

mysql-connector 5.1.40

resteasy 3.1.1.Final

hibernate 5.1.0.Final

jena 3.2.0

jts 1.13

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 22

4 DOMAIN SPECIFIC LUNGUAGE MODEL

4.1 Overview

FIESTA-IoT experiment management is facilitated by the usage of a Domain Specific
language (DSL) that is capable of hosting all the experiments of a specific User. This
language is called FIESTA-IoT Experiment Description Specification (FEDSpec) and
its core structure is depicted in Figure 6 below. In this section we are going to present
the FEDSpec DSL as well as an example of how to use it and the current supported
entities from the FIESTA-IoT Experiment Execution Engine (EEE).

4.2 FIESTA-IoT Experiment Model Object (FEDSpec)

FIESTA-IoT Experiment Description Specification (FEDSpec) is an XML document
whose structure is described in the XML Schema Definition (XSD) provided in Table
9 of APENDIX I below. FEDSpec, as shown in Figure 6, can host all the defined
experiments of an Experimenter by including multiple FIESTA-IoT Experiment Model
Objects (FEMO).

Figure 6. FEDSpec Schema graph

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 23

FEMO is responsible of holding the description of a single experiment and consists
of:

• The description: (Optional) where a short textual description of the
experiment can be added.

• The Experiment Design Metadata (EDM): (Optional) where the graphical
metadata of the experiment editor can be stored (i.e. node-red) that facilitate
the conversion of a FEMO to a graphical representation of the experiment to
an Editor (these metadata are editor specific).

• The domain of interest: where we can have the list of domains of interest of
the experiment, which can be used for discovery purposes, based on the M3-
lite taxonomy.

• The FIESTA-IoT Service Model Object (FISMO): which is the main and most
important experiment descriptive entity, one or many of which can be included
in a FEMO object and thus create a complete experiment.

Figure 7. FISMO Schema graph

FISMO, as shown in Figure 7 above, consists of the following entities:

• The description: (Optional) where a short textual description of the
experiment's Service can be added.

• The discoverable: (Optional) here a Boolean defines if the experiment is
discoverable or not.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 24

• The service: (Optional) here the URL for accessing the “iot-lite:Service” can
be hosted for providing access to the semantic datasets.

• The experiment control: which controls how the Service should be
processed; in particular, it specifies the conditions under which the service
should be invoked (e.g., specifying a periodic schedule, defining specific
visualizations, etc.). This control is facilitated by the following entities (shown
in Figure 8 below):

o Scheduling: (Optional) which may be defined to specify a periodic
schedule for query execution for a specific subscription. The schedule
of the Service could be defined, if required, by identifying:

§ Start time: (Optional) the time that the service should be started.
§ Periodicity: (Optional) how often the service will be executed.
§ Stop time: (Optional) when the service should be stopped.

o Trigger: (Optional) the URL that should be invoked in order to trigger
the execution of the Service if required

o Report if empty: (Optional) If true, a Result Set is always sent to the
subscriber when the query is executed. If false, a Result Set instance is
sent to the subscriber only when the results are non-empty.

Figure 8. Experiment Control Schema graph

• The experiment output: (shown in Figure 9 below) which defines the required
information for the instantiation of the output of an experiment. The output
could be provided in various ways i.e. visualization (widget) at a webpage or
as a file. The output configuration is facilitated by the following entities:

o The location: which hosts the URI where the output should be sent.
o The file: (Optional) where the file type of the output can be identified

The current valid list of files types that are supported are:
§ "text/plain",

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 25

§ "text/tab-separated-values",

§ "text/csv",
§ "application/sparql-results+json",

§ "application/sparql-results+xml",
§ "application/sparql-results+thrift",

§ "application/json",
§ "text/xml" and

§ "application/xml".
The Experimenter should choose either one of them.

o The widget: (Optional) which defines the required information for the
instantiation of the presentation GUI as defined at the initial user
request at the experiment definition time. For example, the widget that
is going to be used for representing the data like a speedometer, a
spreadsheet, a map or a diagram.

Figure 9. Experiment Output Schema graph

• The query control: is responsible to host the description of the required query

that should be executed in order to provide the results/data from this
experiment Service. Along with the query itself it holds additional entities that
enable the discovery and dynamic configuration of the query. The query
control configuration is facilitated by the following entities (shown in Figure 10
below):

o Quantity kind: (optional) a list of quantity kind URIs, based on the m3-
lite taxonomy, to identify the type of measurements involved in this
query.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 26

o Static location: (optional) the geo-coordinates of the experiment/query
that will facilitate the experiment discovery.

o Query interval: (optional) provides the time interval that the query
should collect data from by explicitly specifying the start/stop date/time
(fromDateTime - toDateTime). Alternatively it can hold the duration in
seconds from the present to the past in order to dynamically calculate
the start/stop date/time. The latter is used if the experiment wants to get
at each execution the values of the last X hours, X days etc.

o Query request: this entity is the most important entity of the FISMO
object and holds the W3C query data (SPARQL7) that should be
executed in order to retrieve the results of the experiment Service.

Figure 10. Query Control Schema graph

o Dynamic attributes: (optional) this entity provides the ability to

dynamically update attributes of the query at the runtime of an
experiment (i.e. in a mobile application to provide the CO2 level of the
current location the experiment geo-coordinates should be updated in
each experiment execution). Dynamic attributes provides predefined

7 https://www.w3.org/TR/sparql11-query/

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 27

attributes (the predefined dynamic attributes) and experimenter defined
attributes (list of dynamic attribute) shown below:

§ Predefined dynamic attributes: (optional) it provides a list of
dynamic attributes with a predefined name and a user defined
initial value. These attributes currently include the:

• dynamic query interval which further contains:
o fromDateTime,
o toDateTime and
o intervalNowToPast which is defined as

milliseconds from now to past. If this is set then
fromDateTime and toDateTime are not used.

• dynamic geo-location: This contains latitude and longitude
information in the string format.

§ Dynamic attribute: (optional) it provides a list of dynamic
attributes with a user-defined name and a user defined initial
value.

Figure 11. Dynamic Attributes Schema graph

• The rule: (optional) which hosts a rule that should be applied on top of the

service results. The rule configuration is facilitated with the help of the
following entities (shown in Figure 12 below):

o The name: a textual representation of the applied rule name
o The rule definition: a textual representation of the applied rule code

which can be a Jena rule or a SPARQL CONSTRUCT.
o Domain Knowledge: the URI stating the domain knowledge of the rule
o Quantity kind: a list of quantity kind URIs based on the m3-lite

taxonomy.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 28

Figure 12. Rule Schema graph

4.3 Defining an experiment through Domain Specification
Language (DSL)

In the following example, we are going to provide a simple experiment definition that
is consumed by the Experiment Execution Engine (EEE) and produce the required
results. A simple FISMO template is provided below. Experimenters should consider
replacing “#*#” with experiment requirements.

<fed:FISMO name="#NAME#">
 <fed:description>#DESCRIPTION#</fed:description>
 <fed:discoverable>#DISCOVERABLE#</fed:discoverable>
 <fed:experimentControl>
 <fed:scheduling>
 <fed:startTime>#STARTTIME#</fed:startTime>
 <fed:Periodicity>#PERIODICITY#</fed:Periodicity>
 <fed:stopTime>#STOPTIME#</fed:stopTime>
 </fed:scheduling>
 <fed:reportIfEmpty>#REPORTIFEMPTY#</fed:reportIfEmpty>
 </fed:experimentControl>
 <fed:experimentOutput location="#URLLOCATION#">
 <fed:file>
 <fed:type>#FILETYPE#</fed:type>
 </fed:file>
 <fed:widget widgetID="eu.fiesta_iot.analytics.toolkit">
 <fed:presentationAttr name="requestBody" value="#WVALUE#"/>
 </fed:widget>
 </fed:experimentOutput>
 <fed:queryControl>
 <prt:query-request>
 <query><![CDATA[

 #[1/1] visualization type: 'Gauge' and sensors

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 29

#QUERY#
]]>

 </query>
 </prt:query-request>
 <fed:dynamicAttrs>
 <fed:predefinedDynamicAttr>
 <fed:dynamicQueryInterval>
 <fed:fromDateTime>#FROMDATETIME#</fed:fromDateTime>
 <fed:toDateTime>#TODATETIME#</fed:toDateTime>
 <fed:intervalNowToPast>#INTERVALNOWTOPAST#</fed:intervalNowToPast>
 </fed:dynamicQueryInterval>
 <fed:dynamicGeoLocation>
 <fed:latitude>#LATITUDE#</fed:latitude>
 <fed:longitude>#LONGITUDE#</fed:longitude>
 </fed:dynamicGeoLocation>
 </fed:predefinedDynamicAttr>
 <fed:dynamicAttr name="#DA_NAME1#" value="#DA_VALUE1#"/>
 <fed:dynamicAttr name="#DA_NAME2#" value="#DA_VALUE2#"/>
 </fed:dynamicAttrs>
 </fed:queryControl>
</fed:Fismo>

To further explain,

• #NAME#: should be the name of the FISMO that experimenter want to have.
For example:
<fed:FISMO name="2ndUseCase">

• #DESCRIPTION#: should be the description of the FISMO to understand what
is the FISMO is about. For example:
<fed:description>Over time all noise observations for a given
location</fed:description>

• #DISCOVERABLE#: should be either “true” or “false”. As explained before this
attribute is used by the EEE to know whether the FISMO can be shown in the
“Other Available FISMO IDs for subscriptions” tab in the Experiment
Management Console. Using this other experimenters could reuse the query
and scheduling information (subscribers should giving a new location that
would send the results to them). For example:
<fed:discoverable>true</fed:discoverable>

• #STARTTIME#: it is the time when the scheduling should start. In case, the
#STARTTIME# in the past, the current time will be used and in case
#STARTTIME# is in future, the given time will be used by the EEE to schedule
the FISMO. The #STARTTIME# should be in DATETIME format.
<fed:startTime>2016-11-08T18:50:00.0Z</fed:startTime>

• #PERIODICITY#: it is the period after which the EEE should re-trigger the
execution of the FISMO. It is in INTEGER format and denotes the Seconds.
For example:

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 30

<fed:Periodicity>250</fed:Periodicity>

• #STOPTIME#: it is the time when the EEE should stop executing the FISMO.
In case, the #STARTTIME# in the past, and is less than #STARTTIME# an
error is raised by the EEE. Thus it is advisable that the #STOPTIME# is in
future and is greater than #STARTTIME# The #STOPTIME# should be in
DATETIME format. For example:
<fed:stopTime>2017-11-08T18:49:59.0Z</fed:stopTime>

• #REPORTIFEMPTY#: It is the Boolean value (“true” or “false”) that should be
set in order for the experimenter to not to receive empty resultsets obtained
after the execution of the query. A value true mean that if the resultset was null
then do also report it. By default the value is false. For example:
<fed:reportIfEmpty>false</fed:reportIfEmpty>

• #URLLOCATION#: it should be the location where the results of the query
should be returned. This is usually a valid URL location. Please note that an
experimenter cannot update this parameter once the FEDSpec is submitted. It
is assumed that the experimenter has developed the functionality behind this
link where EEE can upload the results in a “multipart” files format. In the
current implementation of EEE, it is also assumed that this is a REST based
API that implements HTTP POST with following REQUEST parameters
connection : keep-alive
Content-Type: multipart/form-data; boundary=--timestamp
An example URLLOCATION is as below:
<fed:experimentOutput
location="http://example.org/ExperimentServer/store/"></fed:exp
erimentOutput>

• #FILETYPE#: this parameter defines the response content-type. As described
above valid content-types that are received are "text/plain", "text/tab-
separated-values", "text/csv", "application/sparql-
results+json", "application/sparql-results+xml",
"application/sparql-results+thrift", "application/json",
"text/xml" and "application/xml". The Experimenter should choose
either one of them. Please note that we do not set the extension of the file
itself. For example:
<fed:file><fed:type>application/xml</fed:type></fed:file>

• #WVALUE# is a JSON string that is of form:
{
 "Method": ["Method 1"," Method 2"," Method 3"],
 "Parameters": ["Parameters 1", "Parameters 2", "Parameters 3"]
}

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 31

Setting this value will enable EEE to know if the FIESTA-IoT Analytics has to
be executed or not. If the experimenters do not want this then they simply just
not provide the widget tag. Further, if this is set then the query should be of
specific format as well. Please refer to the query template below:

Prefix …
Select distinct ?sensingDevice ?dataValue ?dateTime
Where {
…
}

Please note the SELECT statement. As per the guidelines set by FISTA-IoT
Analytics tool, this SELECT statement should not be modified. The
experimenters will receive a CSV file always if this is set. Setting the
#FILETYPE# will have no effect. Also note that the permissible values of
“Methods” and “Parameters” are:

Method Parameters Description
Outlier Thresh

Value between 0 and 1, selects the percentage of
tail values to remove from the ordered time series
data.

FilterData Type Select between, “B” Bandpass Filter, “L”
Lowpass filter and Highpass filter “H”.

 cutoff_1 For the respective filters is the first normalised
cutoff frequency, between 0 and 0.5.

 cutoff_2 For bandpass filter only, the second cutoff
frequency.

 numtaps Filter length. Usually select 30.
KMeans NumClusters The number of clusters to select. An integer

value.
PCA Mode Select either, “ExpVar” the explained variance

for the different principal components,
or “Comp” the principal component loadings that
is the direction in the data corresponds to the
highest variance.

LinReg Type Select between, “Param” the estimated
parameters of the regression model, and
“Predict” the estimate of the output given the
test data.

 Dependant Select the column index corresponding to the
dependent variable.

 Ratio Select the ratio of the training data to test data.
Value between 0 and 1.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 32

KNNreg Num Selects the number of nearest neighbours.
 Dependant Select the column index corresponding to the

dependent variable.
 Ratio Select the ratio of the training data to test data.

Value between 0 and 1.
FFT N/A N/A
Periodogram N/A N/A
Correlation N/A N/A

An example “#WVALUE#” is as shown below:

{
 "Method": ["fft","linReg"],
 "Parameters": ["", "Predict"]
}

Note that the values in Parameters should have one-one mapping to values in
Methods.

• #QUERY#: is the actual SPARQL query that should be executed by the EEE
on the Meta-Cloud. For best results, we advise experimenters to not to
provide following query and be specific to the needs.

select * where {?s ?p ?o.}

The above query would hinder the performance of the IoT-Registry
component. A valid query would look like:

Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
Prefix time: <http://www.w3.org/2006/time#>
Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
select ?s ?ti ?val

 where {
?o a ssn:Observation.
?o ssn:observedBy ?s.
?o ssn:observedProperty ?qkr.
?qkr a ?qk.
Values ?qk {m3-lite:Sound m3-lite:SoundPressureLevelAmbient}
o ssn:observationSamplingTime ?t.
?o geo:location ?point.
?point geo:lat "4.346104E1"^^xsd:double.
?point geo:long "-3.80649E0"^^xsd:double.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 33

?t time:inXSDDateTime ?ti.
?o ssn:observationResult ?or.
?or ssn:hasValue ?v.
?v dul:hasDataValue ?val.

} group by (?s) ?ti ?val

Note that the #QUERY# should be between “<![CDATA[#[1/1]
visualization type: 'Gauge' and sensors” and “]]”.

The following parameters are to be used when dynamic attributes are needed in the
query.

• #FROMDATETIME#: This attribute represents the “from” date time a query
has to be executed. Within the query please use “%%fromDateTime%%” so
that it is replaced with the value provided correctly. This attribute is dynamic so
this attribute should be presented as a default value in DATETIME format in
the FEDSpec. In the FEDSpec, experimenters can define it as, for example:
<fed:fromDateTime>2006-05-04T18:13:51.0Z</fed:fromDateTime>

• #TODATETIME#: This attribute represents the “to” date time a query has to be
executed. Within the query please use “%%toDateTime%%” so that it is
replaced with the value provided correctly. This attribute is dynamic so this
attribute should be presented as a default value in DATETIME format in the
FEDSpec. In the FEDSpec, experimenters can define it as, for example:
<fed:fromDateTime>2006-05-04T18:13:51.0Z</fed:fromDateTime>

• #INTERVALNOWTOPAST#: This attribute represents milliseconds from now
to past. This is used in case experimenters do not want to specify
#FROMDATETIME# and #TODATETIME#. This attribute is not needed to be
represent in the query, however in the query, experimenters should still have
“%%fromDateTime%%” and “%%toDateTime%%” so that EEE can process
the #INTERVALNOWTOPAST# and replace them accordingly. EEE resolves
“%%fromDateTime%%” as “current time - #INTERVALNOWTOPAST#”. In the
FEDSpec, experimenters can define it as, for example:
<fed:intervalNowToPast>300000</fed:intervalNowToPast>

• #LATITUDE#: This attribute represents the “latitude” in a query that has to be
executed. Within the query please use “%%geoLatitude%%” so that it is
replaced with the value provided correctly. This attribute is dynamic so this
attribute should be presented as a default value in float format in the
FEDSpec. In the FEDSpec, experimenters can define it as, for example:
<fed:latitude>46.52119378179781</fed:latitude>

• #LONGITUDE#: This attribute represents the “longitude” in a query that has to
be executed. Within the query please use “%%geoLongitude%%” so that it is
replaced with the value provided correctly. This attribute is dynamic so this

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 34

attribute should be presented as a default value in float format in the
FEDSpec. In the FEDSpec, experimenters can define it as, for example:
<fed:longitude>46.52119378179781</fed:longitude>

• #DA_NAME_NUMBER# and #DA_VALUE_NUMBER# these attributes go
hand in hand. They form a key value pair. It is advised that experimenters use
the #DA_NAME_NUMBER# in the query as “%%DA_NAME_NUMBER%%”.
Please note change of “#” to “%%”. In the FEDSpec, experimenters can define
it as, for example:
<fed:dynamicAttr name="qk" value="http://purl.org/iot/vocab/m3-
lite#AirTemperature"/>
<fed:dynamicAttr name="unit" value="http://purl.org/iot/vocab/m3-
lite#Degree"/>

Note that in the example #DA_NAME1# is “qk” and
DA_VALUE1=http://purl.org/iot/vocab/m3-lite#AirTemperature

A sample query that utilizes the dynamic attributes is mentioned below for
reference:
Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
Prefix time: <http://www.w3.org/2006/time#>
Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?sensorID (max(?ti) as ?time) ?value ?latitude ?longitude
where {

 ?o a ssn:Observation.
?o ssn:observedBy ?sensorID.

 ?o ssn:observedProperty ?qkr.
 ?qkr rdf:type ?qk.

Values ?qk {m3-lite:Sound m3-lite:SoundPressureLevelAmbient}
?o ssn:observationSamplingTime ?t.
?o geo:location ?point.

 ?point geo:lat ?latitude.
?point geo:long ?longitude.

 ?t time:inXSDDateTime ?ti.
 ?o ssn:observationResult ?or.
 ?or ssn:hasValue ?v.
 ?v dul:hasDataValue ?value.
 FILTER ((xsd:double(?latitude) >= "-90"^^xsd:double)

&& (xsd:double(?latitude) <= "90"^^xsd:double)
 && (xsd:double(?longitude) >= "-180"^^xsd:double)

&& (xsd:double(?longitude) <= "180"^^xsd:double))
FILTER(?value>="50"^^xsd:double)
FILTER(?ti > "%%fromDateTime%%"^^xsd:dateTime && ?ti <

"%%toDateTime%%"^^xsd:dateTime)
} group by ?sensorID ?time ?value ?latitude ?longitude

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 35

On top of the FISMO there is a FEMO object. Currently EEE support the following
FEMO template.

<fed:FEMO name="#FEMONAME#">

<fed:description>#FEMODESCRIPTION#</fed:description>

<fed:domainOfInterest>#DOMAINOFINTERESTLIST#</fed:domainOfInterest>

 <fed:FISMO name="#NAME#">

…

</fed:FISMO>

</fed:FEMO>
Here:

• #FEMONAME#: should be the name of the FEMO that experimenter want to
have. For example:
<fed:FEMO name="MySecondExperiment">

• #FEMODESCRIPTION#: should be the description of the FEMO to
understand what is the FEMO is about. For example:
<fed:description>LargeScale crowdsensing experiment
</fed:description>

• #DOMAINOFINTERESTLIST#: this is the list of the domain of interests that
experiment supports. For multiple domain of interests values should be blank
space separated. For example.
<fed:domainOfInterest>http://purl.org/iot/vocab/m3-
lite#Transportation http://purl.org/iot/vocab/m3-lite#Pollution
http://purl.org/iot/vocab/m3-lite#City http://purl.org/iot/vocab/m3-
lite#Health</fed:domainOfInterest>

Further on the top of the FEMO object, there exists a FEDSpec object.
<fed:FEDSpec xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fed="http://www.fiesta-iot.eu/fedspec"
 xmlns:prt="http://www.w3.org/2007/SPARQL/protocol-types#"
 xmlns:vbr="http://www.w3.org/2007/SPARQL/results#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="FILELOCATION"

userID="#USERID#">
<fed:FEMO name="#FEMONAME#">
…
</fed:FEMO>

</fed:FEDSpec>

For complete valid sample please refer to APPENDIX II and more specifically in
Table 11.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 36

5 EXPERIMENT REGISTRY MANAGEMENT (ERM)

Experiment Registry Management (ERM) component exposes an API that facilitates
the experiment storage, retrieval and discovery. This is achieved by manipulating
objects that comply with the FEDSpec schema and its various defined entities.

5.1 API Definition

Table 2 below illustrates the main API primitives that support the Experiment Registry
Management functionalities, while Table 3 provides more details about each one of
the functions that comprise the API.
Table 2. List of primitives comprising the Experiment Registry Management API

<<interface>>
ExperimentRegistryManagementInterface

POST:saveUserExperiments(fedSpec:FEDSpec):String
POST:deleteUserExperiments (userID:String):String
POST:saveUserExperiment(femo:FEMO, userID:String):String
POST:deleteUserExperiment (femoID:String):String
POST:saveUserExperimentServiceModelObject (fismo:FISMO, femoID:String):String
POST:deleteExperimentServiceModelObject (fismoID:String):String
GET: getALLUserExperiments (userID:String):FEDSpec
GET:getAllUserExperimentsDescriptions (userID:String):ExpDescriptiveIDs
GET: getExperimentDescription (femoID:String):FemoDescriptiveID
GET:getExperimentModelObject (femoID:String):FEMO
GET:getExperimentServiceModelObject (fismoID:String):FISMO
GET:getDiscoverableExperimentServiceModelObjects (): List<FISMO>

The FIESTA-IoT implements the methods of the Experiment Registry Management
API as specified in Table 3 below:

Table 3. Experiment Registry Management API definition
Service Name Input Output Info

saveUserExperiments FEDSpec
fedSpec String

Used to submit the constructed
experiment to the cloud. Requires as
input the FIESTA-IoT Experiment
Description Specification (FEDSpec)
which includes all the User’s
preferences regarding the
Experiment, request lifecycle and
visualization. It returns the
constructed Experiment ID.

deleteUserExperiments String userID String Used to delete all User experiments.
Returns a success message.

saveUserExperiment
FEMO femo,

String userID
String

Used to save/update (if the
Experiment does not contain a
registered ID) a user experiment.
Returns a success message.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 37

deleteUserExperiment String femoID String

Used to delete a registered
Experiment. Requires as input the
Experiment ID. Returns a success
message.

saveExperimentService
ModelObject

FISMO fismo,
String femoID String

Used to Save/update (if the service
model object does not contain a
registered ID). Returns a success
message.

deleteExperimentService
ModelObject String fismoID String Used to delete an Experiment

Service. Returns a success message.

getALLUserExperiments String userID FEDSpec

Used to retrieve All the Experiments
defined by a user. It returns an
FIESTA-IoT Experiment Description
Specification. Requires as input a
User ID.

getAllUserExperiments
Descriptions String userID

Exp
Descriptive
IDs

Used to retrieve the available
experiments (a list of
experimentID/ServiceName/ServiceD
escription triplet) already registered
by a specific user. Requires as input a
User ID.

getExperiment
Description String femoID

Femo
Descriptive
ID

Used to retrieve the available services
(a list of
serviceID/ServiceName/ServiceDescr
iption triplet) already registered by a
specific user. Requires as input the
Service ID.

getExperimentModel
Object String femoID FEMO

Used to retrieve the description
(FEMO) of an available Experiment.
Requires as input the Experiment ID

getExperimentService
ModelObject String fismoID FISMO

Used to retrieve the description
(FISMO) of an available service.
Requires as input a Service ID.

getDiscoverableExperime
ntServiceModelObjects

List

<FISMO>
Used to retrieve a list of discoverable
Service Model Objects.

In Table 4. Experiment Registry Management API Usagebelow we can find the
details for using the ERM API.

Table 4. Experiment Registry Management API Usage
Service Name Service Usage

saveUserExperiments

POST /experiment.erm/rest/experimentservices/saveUserExperiments

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 38

Content-Type: application/xml

Cache-Control: no-cache

Body:

<?xml version="1.0" encoding="UTF-8"?>

<fed:FEDSpec xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"

</fed:FEDSpec>

deleteUserExperiments

POST
/experiment.erm/rest/experimentservices/deleteUserExperiments?user
ID=USERID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundary7MA4YWxkTrZu0gW

saveUserExperiment

POST
/experiment.erm/rest/experimentservices/saveUserExperiment?userID
=USERID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Content-Type: application/xml

Cache-Control: no-cache

Body:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns2:FEMO xmlns:ns2="http://www.fiesta-iot.eu/fedspec"

</ns2:FEMO>

deleteUserExperiment

POST
/experiment.erm/rest/experimentservices/deleteUserExperiment?femo
ID=FEMOID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundary7MA4YWxkTrZu0gW

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 39

saveExperimentService
ModelObject

POST
/experiment.erm/rest/experimentservices/saveExperimentServiceMod
elObject?femoID=FEMOID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Content-Type: application/xml

Cache-Control: no-cache

Body:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <ns2:FISMO name="2ndUseCase">

......

 </ns2:FISMO>

deleteExperimentService
ModelObject

POST
/experiment.erm/rest/experimentservices/deleteExperimentServiceMo
delObject?fismoID=FISMOID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundary7MA4YWxkTrZu0gW

getALLUserExperiments

GET
/experiment.erm/rest/experimentservices/getALLUserExperiments?us
erID=USERID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

getAllUserExperiments
Descriptions

GET
/experiment.erm/rest/experimentservices/getAllUserExperimentsDesc
riptions?userID=USERID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

getExperiment GET

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 40

Description /experiment.erm/rest/experimentservices/getExperimentDescription?f
emoID=FEMOID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

getExperimentModel
Object

GET
/experiment.erm/rest/experimentservices/getExperimentModelObject?
femoID=FEMOID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

getExperimentService
ModelObject

GET
/experiment.erm/rest/experimentservices/getExperimentServiceModel
Object?fismoID=FISMOID

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

getDiscoverableExperime
ntServiceModelObjects

GET
/experiment.erm/rest/experimentservices/getDiscoverableExperimentS
erviceModelObject

HTTP/1.1

Host: platform.fiesta-iot.eu

iPlanetDirectoryPro: TOKEN_FROM_USER_CREDENTIALS

Cache-Control: no-cache

5.1.1 Object Definition

The FEDSpec XSD, which was described in detail in Section 4.2 above, can be found
in Appendix I and more specifically in Table 9 below. In Figure 13 below we can see
the ExpDescriptiveIDs schema graph (the XSD is provided in Appendix I below and
more specifically in Table 10 below) which consists of:

• A list of FEMO Descriptive ID: which is capable of providing a high-level
deception of an experiment and It includes:

o The ID of the experiment
o The description of the experiment
o The name of the experiment and

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 41

o A list of FISMO Descriptive ID: which is capable of providing a high-
level deception of a Service Model Object and It includes:

§ The FISMO ID
§ The FISMO description and
§ The FISMO name

Figure 13. Experiment Descriptive IDs schema graph.

5.2 Exceptions

Methods of the Experiment Registry Management API signal error conditions to the
client by means of exceptions. The following exceptions are defined in Table 5. All
the exception types in the following table are extensions of a common
ExperimentRegistryManagementException base type, which contains one string
element giving the reason for the exception.
Table 5 Exceptions associated with the Experiment Registry Management API

Exception Name Meaning

SecurityException

The operation was not permitted due to an
access control violation or other security
concern. This includes the case where the
service wishes to deny authorization to
execute a particular operation based on the
authenticated client identity. The specific
circumstances that may cause this exception
are implementation-specific, and outside the
scope of this specification.

FEDSpecValidationException
The Experiment Registry Management
failed to successfully validate the FEDSpec
comprising the service request. This can be a
result of a malformed FEDSpec

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 42

specification.

FemoValidationException
The Experiment Registry Management
failed to successfully validate the FEMO
comprising the service request. This can be a
result of a malformed FEMO specification.

FismoValidationException
The Experiment Registry Management
failed to successfully validate the FISMO
comprising the service request. This can be a
result of a malformed FISMO specification.

NoSuchExperimentID
The Experiment Registry Management
failed to identify the Experiment ID i.e. the
Experiment ID is not available within the
Experiment Registry repository.

NoSuchServiceModelObjectID

The Experiment Registry Management
failed to identify the Service Model Object
ID i.e. the Service Model Object ID is not
available within the Experiment Registry
repository.

NoSuchUserID
The Experiment Registry Management
failed to identify the User ID i.e. the User ID
is not available within the Experiment
Registry repository.

ImplementationException

A generic exception raised by the
implementation for reasons that are
implementation-specific. This exception
contains one additional element: a severity
member whose values are either ERROR or
SEVERE. ERROR indicates that the
Experiment Registry Management
implementation is left in the same state it
had before the operation was attempted.
SEVERE indicates that the Experiment
Registry Management implementation is left
in an indeterminate state.

ResultTooLargeException
An attempt to execute a request resulted in
more data than the service was willing to
provide.

The exceptions that may be raised by each Experiment Registry Management
method are indicated in the table below. An Experiment Registry Management
implementation SHALL raise the appropriate exception listed below when the
corresponding condition described above occurs. If more than one exception
condition applies to a given method call, the Experiment Registry Management
implementation may raise any of the exceptions that applies.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 43

Table 6 Exceptions thrown by the different Experiment Registry Management
services

Service Name Throws

saveUserExperiments
SecurityException
FEDSpecValidationException
ImplementationException

deleteUserExperiments
SecurityException
NoSuchUserID
ImplementationException

saveUserExperiment
SecurityException
FemoValidationException
NoSuchUserID
ImplementationException

deleteUserExperiment
SecurityException
NoSuchExperimentID
ImplementationException

saveUserExperimentServiceModelObje
ct

SecurityException
FismoValidationException
NoSuchExperimentID
ImplementationException

deleteExperimentServiceModelObject
SecurityException
NoSuchServiceModelObjectID
ImplementationException

getALLUserExperiments
SecurityException
NoSuchUserID
ImplementationException
ResultTooLargeException

getAllUserExperimentsDescriptions
SecurityException
NoSuchUserID
ImplementationException
ResultTooLargeException

getExperimentDescription
SecurityException
NoSuchExperimentID
ImplementationException
ResultTooLargeException

getExperimentModelObject
SecurityException
NoSuchExperimentID
ImplementationException
ResultTooLargeException

getExperimentServiceModelObject
SecurityException
NoSuchServiceModelObjectID
ImplementationException
ResultTooLargeException

getDiscoverableExperimentServiceMo
delObjects

SecurityException
ImplementationException
ResultTooLargeException

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 44

5.3 Prototype Implementation

In this section, we provide an installation and basic usage manual of the ERM
prototype implementation. At this point it worth to mention that although the API
specifications and implementations are in a mature state as the project evolves the
implementations and APIs will evolve as well. This is why FIESTA-IoT consortium
has authored a Handbook [1] that is a “living document” and will get updated as the
platform evolves. This Handbook is a public document and offered to the FIESTA-IoT
platform users.

5.3.1 Design

The ERM implementation was designed in a way to be able to support future
requirements over the User’s experiment definition and discovery. For this reason,
we decided to store all the FEDSpec entities into a one to one mapping fashion over
a relational database schema which is depicted in Figure 14 below.

Figure 14 ERM Relational Database Schema.

Moreover this relational database is mapped with the object-oriented domain model
of FEDSpec with the help of Hibernate ORM8.

5.3.2 Source code Availability and Structure

The Experiment Registry Management component is offered at FIESTA-IoT GitLab
repository which is named “core” and is available at: https://gitlab.fiesta-

8 http://hibernate.org/

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 45

iot.eu/platform/core/. The latest version of the components is under the “develop
branch”9 .
The repository is organized in 4 categories/folders and the ERM component is placed
as follows:

• doc: provides all the related documents with the platform.
• module: provides the core modules of the platform

o experiment: provides the modules related with the experiments
§ experiment.erm: the Experiment Registry Management module

• utils: provides utilities related with the platform
o utils.commons: include the common utils/objects used in more than 2

projects/components

5.3.2.1 System Requirements

The ERM component is deployed within a WildFly container and use Maven for
project management. The prototype runs on Windows, Linux, Mac OS X, and Solaris.
In order to run the prototype, you need to ensure that Java 8 and WildFly are
installed and/or available on your system. In order to build the prototype, you will also
need Maven. Before attempting to deploy and run the prototype applications, make
sure that you have started WildFly.
More details about the specific versions of the tools and libraries that have been used
for the development or that are required for the deployment and execution of the
prototype are given in the section below.

5.3.2.2 Install & Run

The prototype has been implemented as a Maven-based web application. Below
WILDFLY_HOME indicates the root directory of the WildFly distribution, and
PROJECT_HOME indicates the root directory of the project.
In order to configure the prototype,

4. make sure that all properties listed in $PROJECT_HOME/src/main/resources/fiesta-
iot.properties have the appropriate values,

5. copy that file into $WILDFLY_HOME/standalone/configuration, and
6. issue the following commands:

In order to build the prototype, run the following command in PROJECT_HOME:
mvn clean package

Finally, in order to deploy the prototype, run the following command in
PROJECT_HOME:
mvn wildfly:deploy

The last step assumes that WildFly is already running on the machine where you run
the command.

9 https://gitlab.fiesta-iot.eu/platform/core/tree/develop

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 46

Alternatively copy the produced (from the build process above) experiment.erm.war
file from the target directory ($PROJECT_HOME/target/), into the
standalone/deployments directory of the WildFly 10 distribution, in order to be
automatically deployed.
If the deployment has been successfully completed, you will be able to access all
web services described in the section above using the following URL:
http://[HOST]:[PORT]/experiment.erm

Where [HOST] is the host and [PORT] the port that WildFly uses.

5.3.2.3 API Usage

The different exposed services described in the ERM API above are exposed at the
following URLs:
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/saveUserExperiments
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/deleteUserExperiments
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/saveUserExperiment
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/deleteUserExperiment
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/saveExperimentServiceModelObject
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/deleteExperimentServiceModelObject
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/getALLUserExperiments
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/getAllUserExperimentsDescriptions
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/getExperimentDescription
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/getExperimentModelObject
http://[HOST]:[PORT]/experiment.erm/rest/experimentservices/getExperimentServiceModelObject

5.3.2.4 Containers and Libraries

The following table lists the containers and libraries that have been used for the
implementation of the prototype. The versions specified in the table are the ones that
have been used during the development.

Table 7 Containers and libraries used for the prototype implementation
Container / Library /
Framework

Version

WildFly 9.0.1.Final

Java Platform, Standard Edition 1.8.0_25

Maven 3.1.1

fiesta-commons 0.0.1

logback 1.0.11

mysql-connector 5.1.39

resteasy 3.0.19.Final

hibernate 5.0.7.Final

10 http://wildfly.org/

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 47

5.4 ERM UI Client

5.4.1 Register a new experiment

FIESTA-IoT is currently offering a simple interface in order to Store, Update and
delete experiments called Experiment Register Client. The Experiment Register
Client can be found at the Experimenter menu of the FIESTA-IoT portal (see Figure
15 below).

Figure 15. Portal Experimenter Menu

The Experiment Register Client provides the ability to store an experiment at the
FIESTA-IoT platform in the form of a FEDSpec. The defined FEDSpec could be as
simple as a single service (FISMO) or as complex as multiple experiments (FEMOs).
To upload a FEDSpec first one should identify the location of it by hitting the “Open
FEDSpec” (see Figure 16 below) and then by hitting the “Save FEDSpec” button. As
soon as the FEDSpec is saved the included FEMOS appears in the available
experiments list (FEMOS) as shown in Figure 16 below. When uploading a FEDSpec
the FEMO/FISMO IDs should be empty, as they will be automatically assigned by the
system.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 48

Figure 16. Experiment Register Client
The User, by choosing a FEMO, is capable to have a quick overview of it as shown in
Figure 17 below.

Figure 17. Experiment Register Client - Experiment Browser

The tools provide also the ability to export a FEMO by hitting the “Export FEDSPEC”
button after choosing the FEMO of interest from the provided list. The FEDSpec that
will be exported will now contain the FEMO/FISMO IDs assigned from the FIESTA-
IoT platform. This will give the Experimenter the ability to update the exported
FEMO/FISMO by updating the XML file and saving it again to the Experiment
Repository following the same process described above.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 49

6 EXPERIMENT MODELLING ENGINE (EME)

Experiment Modelling Engine is a visual programming tool provided by FIESTA-IoT
for the ease of experiment modelling to users that came from non-programming
background. This is achieved by using one of the established visual programming
tool Node-RED.

6.1 Node RED

Node-RED is a programming tool for wiring together hardware devices, APIs and
online service in new and interesting ways. It provides a browser-based editor that
makes it easy to wire together flows using the wide range of nodes in the palette that
can be deployed to its runtime in a single-click.
FIESTA-IoT customized Node-RED called Experiment Modelling Engine (EME) is
used to perform experiment storage, retrieval, discovery and termination by using the
visual programming nature of the Node-RED. The Experiment Modelling Engine
comes with four basic FIESTA-IoT Nodes

1. Service Node
2. FEMO Node
3. FISMO Node
4. Query Control Node

Each Service Node can perform one of the twelve operations on FEDSpec schema
which can be categorized into either storage, retrieval, discovery or termination (refer
to section 5 - Experiment Registry Management, Table 3 - Experiment Registry
Management API definition). A Service Node can take input from two kinds of Nodes;
FEMO Node and FISMO Node. A Service Node taking input from the FEMO Node
receives a FEMO template and when taking input from the FISMO Node, the Service
Node receives FISMO template. The Service Node can be configured to perform
selected operation by taking direct input at the node or by taking input from the wired
node as shown in Figure 18 below.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 50

Figure 18. Service Node

The FEMO Node is a template node which generates FEMO template as output. The
FEMO Node can take input from three kinds of nodes; Service Node, FISMO Node
and any other kind of node. A FEMO Node receiving input from the Service Node will
assign a FEMO ID to the FEMO template that is going to be generated (note: any
FEMO that is generated without ID will be considered as a New FEMO Object). A
FEMO Node receiving input from the FISMO Node will generate a FEMO template
which has a FISMO template embedded in it. A FEMO Node receiving input from any
other kind of node will simply trigger the template generation (note: a FEMO node
that is not connected to FISMO will always generate an Empty FEMO Object). The
FEMO Node should be configured by the user to provide information such as
description, domain of interest (refer to section 4.2 - FESTA-IoT Experiment Model
Object). The following Figure 19 below depicts the possible input connections of
FEMO Node.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 51

Figure 19. FEMO Node

The FISMO Node is a templating node which generates FISMO template as output.
The FISMO Node can take input from three kinds of nodes; Service Node, Query
Control Node and any other kind of node. A FISMO Node receiving input from the
Service Node will assign a FISMO ID to the FISMO template that is going to be
generated (note: any FISMO that is generated without ID will be considered as a New
FISMO Object). A FISMO Node receiving input from the Query Control Node will
generate a FISMO template which has a Query Control template embedded in it. A
FISMO Node receiving input from any other kind of node will simple trigger the
templet generation (note: a FISMO node that is not connected to Query Control Node
will always generate a default ‘fed:queryControl’ for the FISMO Object). The FISMO
Node should be configured by the user to provide information such as Description,
Service, EDM, Experiment Control (optional), Location and Experiment Output
(optional) (refer to section 4.2 - FESTA-IoT Experiment Model Object). Figure 20
below depicts the possible input connections of FISMO Node.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 52

Figure 20. FISMO Node

The Query Control Node is a template node which generates ‘fed:queryControl’
template. The Query Control Node can be used with any kind of node which would
simple trigger the generation of ‘fed:queryControl’ template. The Query Control Node
should be configured by the user to provide information such as Quantity Kind, Static
Location, Query Interval, and Query Request (refer to section 4.2 - FESTA-IoT
Experiment Model Object).

6.2 Experiment Operation Flows

Using Service Node or combinations of Service Node, FEMO Node, FISMO Node
and Query Control Node we can perform twelve different operations on Experiment
by manipulating the objects to comply with in the FEDSpec schema, some of these
operation flows are described below.
‘Save User Experiments’ is one of the operation available by using Service Node.
This operation can save a FEDSpec by taking FEDSpec as input at the configuration
of the node. To perform ‘Save User Experiment’ just Service Node and any kind of
trigger node is enough.
‘Delete User Experiments’ operation of Service Node deletes all user experiments
and to create this flow, only Service Node and any kind of trigger node is enough.
‘Save User Experiment’ operation can be performed in multiple ways, one of them is
by providing a FEMO Object at the Service Node we can perform this operation by
using just the Service Node and any kind of trigger node. We can also perform this
operation with the combinations of Service Node – FEMO Node – FISMO Node –
Query Control Node – trigger node or Service Node – FEMO Node – FISMO Node or
just Service Node – FEMO Node. These combinations should always end with the

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 53

result of saving an experiment with the difference of having FEMO with embedded
FISMO or an empty FEMO (i.e. FEMO without FISMO). Figure 21 shows the possible
flows of the ‘Save User Experiment’.

Figure 21. Save User Experiment Flows

‘Save Experiment Service Model Object’ operation can be performed in multiple
ways, one of them is by providing a FISMO Object at the Service Node we can
perform this operation by using just Service Node and any kind of trigger node. We
can also perform this operation with the combination of Service Node – FISMO Node
– Query Control Node –trigger node or Service Node – FISMO Node.

Figure 22. Save Experiment Service Model Object Flows

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 54

These combinations would always end with the result of saving an experiment
service model object with the difference of having either the user defined or pre-
determined ‘fed:queryControl’. The Figure 22 above shows the possible flows of the
‘Save Experiment Service Model Object’.
The Table 8 below provides the possible flows of the remaining operations. The
nodes are connected in the order they are specified (the first specified nodes output
is wired to the next specified node’s input).

Table 8 Flows for Service Node's Services
Service Name Input Output Flow

Delete User
Experiment

FEMO-ID Success message
+ FEMO-ID

Trigger Node –
Service Node

Delete Experiment
Service Model
Object

FISMO-ID Success message
+ FISMO-ID

Trigger Node –
Service Node

Get All User
Experiments

__ All Experiments Trigger Node –
Service Node

Get All User
Experiments
Descriptions

__ Experiment
Descriptive Ids

Trigger Node –
Service Node

Get Experiment
Description

FEMO-ID FEMO Descriptive
ID

Trigger Node –
Service Node

Get Experiment
Model Object

FEMO-ID FEMO Object Trigger Node –
Service Node

Get Experiment
Service Model
Object

FISMO-ID FISMO Object Trigger Node –
Service Node

Get Discoverable
Experiment
Service Model
Objects

__ List of FISMO Trigger Node –
Service Node

6.3 Installation

Node RED requires ‘node.js’ to be installed in the target machine. User can get the
latest Long Term Support (LTS) version of Node 6.x from:

• Mac OS X Installer: Universal
• Windows Installer: 32-bit or 64-bit
• Linux Binaries: 32-bit or 64-bit

The easiest way to install Node-RED is to use node’s package manager, npm.
Installing it as a global module adds the command node-red to your system path:

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 55

$sudo npm install -g --unsafe-perm node-red

Once installed, you are ready to run Node-RED using the following command

 $node-red

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 56

7 EXPERIMENT WORKFLOW

In this section, we first provide an updated version of the experiment workflow. Then
we provide the integration details and the workflow of FIESTA-IoT Analytics Toolkit
(FAT) component and EEE. Thereafter, we discuss the Living Lab Experiment which
follows the experiment workflow to discover resources, define and execute
experiment, and retrieve results from the FIESTA-IoT Meta-Cloud.

7.1 Experiment Workflow

Experiment Workflow is the process followed by an experimenter from the very
moment he/she starts building his/her own experiment to the instant the first batch of
results are gathered (after that, we can assume that the thread is an infinite loop).
Figure 23 below depicts the different stages that are to be carried out in order to build
a fully-fledged experiment/application/service. Below we proceed to delve into the
details of each of the different phases that will shape an experiment, including a “pre-
experiment” step that addresses the establishment of a secure channel between
experimenters and FIESTA-IoT.

Figure 23. Experiment Workflow

• PHASE 0 “Experimenter registration”. Aside the specification and definition
of the experiment per se, external users must sign up with the FIESTA-IoT
platform prior to extract data from the different underlying testbeds that
compose the federation. Hence, the very first step to be done is to get
registered as an external user, following a triple A (Authentication,
Authorization and Accounting – AAA) service, whose outcome is gathered
from the following steps:

- Identify the user, differentiating between different roles: experimenter,
testbed provider (raw-data producer), knowledge producer or value-
added service provider. For a deeper classification of this taxonomy,
the reader might refer to D2.4 [3], where we describe the OpenAM-
based solution that will be in charge of protecting the communications
between FIESTA-IoT and outsiders (in a bidirectional way).

- Establish the ownership and bindings between experimenters and their
respective experiments. Together with this linkage, other experimenters
will be able to browse/discover among the off-the-shelf experimenters
that have been previously registered into the platform. This way, as was
mentioned in previous sections, experimenters might decide not to start

Resource
Discovery

• Discover resources
in the domain of
interest based on
Location & their
Types

• Query
• IoT Registry

Experiment
Definition

• Define an
experiment as per
the DSL Model
specified by
FIESTA-IoT

• FEDSpec
• ERM

Experiment
Execution

• Schedule the
execution of an
experiment & apply
other functions

• Reasoner
• FAT
• EEE, EMC

Results
Retrieval

• Retrieve the
Results of an
executed
experiment (in
specified format)

• Single Burst or
Continuous
Catering

• Visualization Tool

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 57

from scratch but from some baselines to rely on. As a note, some of the
services to discover these experiments are described in Deliverable
D4.7 [10].

- Exchange the set of credentials (i.e. single sign-on token) to guarantee
a protected and secure communication between experimenters (or
testbeds) and the FIESTA-IoT platform (all the information regarding
the security framework chosen for this project can be found in D4.3 [8].
Once the experiment has been authenticated and authorized,
experimenters can proceed to carry out the following steps.

• PHASE 1 “Domain and resource discovery”. Despite the vast plethora of
domains that are embraced by the FIESTA-IoT federation and its subjacent
platforms (which will increase with new testbeds that are fostered via the open
calls), experimenters usually focus on a single (or few) particular area or
“domain of interest”, thus filtering out all resources that are actually out of their
scope. In this initial “discovery” stage, experimenters will retrieve a list (i.e.
semantic annotated description) that holds all the resources/Virtual Entities/IoT
Services that match the requirements specified for this stage. Typically, these
searches will be based upon domain, location or physical phenomena-based
queries.

• PHASE 2 “Experiment definition”. Once experimenters have selected their
domain of interest and have framed the location and physical phenomena that
they are interested in, it is time to go a step beyond and start defining the
actual characteristics that will model the experiment per se, using the
FEDSpec. This part defines how to deal with the information generated by
these resources/Virtual Entities/IoT Services. To do this, there is a number of
different offered possibilities to retrieve the data [3]. We slightly outline the
mainstream ones below:

- Service invocation (≈ synchronous service). The first and most
straightforward option to get data is through the invocation of the
services that expose the resources (or the Virtual Entities’ properties).
These are stored as part of their respective annotated descriptions (see
the FIESTA-IoT ontology defined in D3.1 [4]. Amongst the available
services, experimenters will be able to e.g. retrieve the last value
observed by a particular sensing device. It goes without saying that we
plan to append more services in the future.

- Historical values. Another possibility of getting information already
captured in the FIESTA-IoT Meta-Cloud is the request of historical
information; i.e. by manually specifying a time window that limits the
range of data (e.g. for the sake of simplicity, and using a natural
language equivalent query: “give me all what you have captured
yesterday between noon and 7pm”).

- Subscriptions (≈ asynchronous service). The main drawback of the first
two options is that they can only grasp information that has been
already taken. Nonetheless, none of them do not directly contemplate
the reception of future information. As a straightforward solution, one
can schedule synchronous queries in order to periodically receive the
requested data. However, it would be more sensible to support a “pub-
sub” like mechanism that implements an efficient way of handling and

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 58

dispatching all the asynchronously events received from the testbeds.
So, the FIESTA-IoT platform will forward and hand the data only to the
appropriate subscribers, thus the system performance would be notably
enhanced.

Apart from the retrieval of the information, FIESTA-IoT will pay special
attention to a number of additional features that operates above this raw data.
Techniques like reasoning, complex events processing or composing of IoT
services, to list a few, are envisaged to be part of the platform in the near
future. A further description of this core part of the architecture can be found in
Deliverable D3.6 [6].
Last, but not least, it is deemed necessary to elicit the execution schedule that
will define the experiment’s operation. Or said in other words, to specify when
and how the experiment will run, including the way that the results will be
presented to users (see Phase 4). Concerning this schedule, a clearer
description is located in Deliverable D4.7 [10].

• PHASE 3 “Experiment execution”. Based on a pseudo-infinite loop
behaviour (managed by the execution schedule defined in the previous
phase), the application will be in charge of retrieving all the information (i.e.
annotated data) that comes from the testbeds across the FIESTA-IoT Meta-
Cloud. It is worth highlighting that this phase might contain the scheduled
delivery of e.g. SPARQL queries to dynamically look for new resources
deployed in the underlying platforms, alter the reasoning rules previously set
during the experiment definition from the output of another parallel machine-
learning engine, etc. Moreover, we must take into account that experiments’
operation times are controlled by the execution schedule generated in the
previous stage. To put an example on the table, there might be the case of
experiments that are only executed once per week (e.g. on Monday noon),
harvest all the data in a single burst, process it and yield the results, thus been
switched off till the next week.

• PHASE 4 “Results retrieval”. After these definition, specification and further
execution processes, the experiment will be ready to achieve results (either at
a single burst or through the continuous catering of data). Depending on
experimenters’ needs or skills, they might be interesting in handling results in
two different ways. On the one hand, they might have a raw-text-based shape
(e.g. CSV, XML, JSON or whichever RDF serialization format if they focus on
semantic descriptions), so that they can use their own analysis tools to
process the results obtained (at experimentation level, that is, outside the
FIESTA-IoT “influence area”). On the other hand, the FIESTA-IoT platform will
support the usage of a number of visualization tools or widgets, thus
facilitating the life to those experimenters who either do not have the technical
expertise to deal with graphical interfaces or have enough with the off-the-
shelf elements provided by the platform (or other added-value service
providers who want to share their work with the project).

7.2 FIESTA-IoT Analytics toolkit Integration with EEE.

The FIESTA-IoT Analytics Toolkit (FAT) component is a data analysis tool that
provides web service for experimenters to do basic analysis. In particular, the

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 59

experimenter defines the input that has specific JSON format (see Error! Reference
source not found. below). The complete JSON object contains a sequence of
methods, the corresponding parameters and the data source where the data is
available in our case the data source is a query. The result for the execution of a FAT
is a CSV containing analyzed results. For complete description of the input, output,
error format, we refer the readers to the deliverable 3.6 [6].

FAT has been integrated in the FIESTA-IoT Architecture. To invoke the services
offered by FAT, experimenters have to follow specific guidelines set by FAT and
EEE. These are provided next.

Currently, FAT has 3 different modes of invocation:
1. Invoking it as an independent service using UI
2. Invoking it as an independent service using API
3. Via EEE

Figure 24. Request Body JSON Object
Within the scope of this deliverable, we provide the workflow to be followed by the
experimenters when FAT is invoked via EEE. In the FIESTA-IoT architecture, EEE
interacts with IoT-Registry in two ways:

- By directly interacting with the IoT-Registry by sending the queries defined in
the service object and

- By sending queries to FAT where FAT acts as a mediator between EEE and
IoT-Registry.

In order to invoke FAT services, experimenters first need to set "value" parameter
in the "presentationAttr" of the "widget" attribute in the service object of
FEDSpec. This value should be a JSON object in a string format. A sample
"widget" attribute is shown below:

<fed:widget widgetID="#FAT_ID_UNIQUE_ALWAYS_FIEXED#">

<fed:presentationAttr name="requestBody" value="#VALUE#"/>
</fed:widget>

Here #VALUE# is as mentioned in Error! Reference source not found. above.
However, the experimenters only provide “Method” and “Parameter” fields. Once this
is set, the experimenter provides the query in the "query" attribute of the service
object in the FEDSpec. This query should follow specifications set by FAT. A
template sample query is provided below:

{
 "Method": ["Method 1"," Method 2"," Method 3"],
 "Parameters": ["Parameters 1", " Parameters 2", " Parameters 3"],
 "SPARQLquery":"SPARQL request string"
 "SPARQLendpoint":"SPARQL endpoint"
}

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 60

Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
Prefix time: <http://www.w3.org/2006/time#>
Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
Select distinct ?sensingDevice ?dataValue ?dateTime
Where {
…
}

Note the Select statement. As per the guidelines set by FAT, the select statement
should not be modified.

The EEE then creates the request body by appending the “DataProvider” field that
has the specified query and sends it to the FAT. The FAT upon receiving the query
forwards the query to the IoT-Registry and sets in the request header
“accept=text/csv”, “userID=#ExperimenterID#” and “fismoID=#FISMOID#”.
Note that the =#ExperimenterID# here is the userID of the experimenter. Upon
validation of the query and other related parameters, FAT performs two tasks: (1)
sends a response to the EEE saying the process has begun and (2) sends the query
to the IoT-Registry. FAT then receive the result in CSV format from IoT-Registry. The
FAT then performs analysis and stores the results in the FIESTA-IoT Experiment
Result Storage (FERS) module. The Experimenter now has to constantly check for
the availability of the results in the FERS as FAT operates in an asynchronous mode.
The Experimenter is provided with a unique API from the FERS using which the
Experimenter downloads all the related results

7.3 Living Lab Experiments

The living lab process, as outlined by Pallot [12], involves a cycle of co-creation,
exploration, experimentation and evaluation of innovative ideas, scenarios, concepts
and related technological artefacts in real-life use cases, as shown in Figure 25
below.
A living lab can be different from a testbed, depending on the role of the User. In a
living lab, the User contributes to the co-creation and exploration of new ideas, and
defining new scenarios for testing. This is then fed to experimenters who define and
recursively refine a hypothesis that is to be tested, and then evaluate based on the
results, and which is then fed back to the users for further refining, or divert using a
different approach.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 61

Figure 25. Living Lab Methodology Cycle

As illustrated by Nati et al [11], the typical execution of an experiment with an IoT
testbed (e.g. SmartICS) involves several stakeholders. A substantial part of the
overall work required to carry out an experiment is related to interactions between
these stakeholders. A simple experiment stakeholder model is defined in Figure 26
below. The key assumption is that the experiment is external, i.e., carried out in the
Experimentation-as-a-Service (EaaS) mode, as is the case within the FIESTA-IoT
ecosystem.

Figure 26. Experiment Stakeholder Model

The stakeholders in this model are:

• Testbed Operators: who are the people who have developed the IoT testbed
and maintain its daily operation. They have the definitive technical expertise
on how the testbed operates and how to interact with it.

• External Experimenters: who are the clients of the experimentation service.
They have envisioned a specific experiment, seeking to attain results from,
and eventually conduct its execution. Prior to the experiment, their knowledge
of the capabilities of a testbed is limited.

• The Users are all people who can potentially be affected by experimental
applications running on the testbed and/or whose behaviour can be observed
by such applications. For example, in the case of SmartICS, a user is anyone
whose office desk has been fixed with an IoT node. The experiment team

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 62

approach users to seek their approval with the installation, and participation in
the experiment for feedback.

It is preferable that External Experimenters interact with testbed operators. Thus,
some of the testbed operators (who are researchers themselves) may get involved in
the research dimension of the experiment, by catering to or customizing certain
requirements for the External Experimenter. In this case, they become known as
Native Experimenters.
In the context of FIESTA-IoT, the role of the experimenter (as the External
Experimenter) within the cycle will be to conduct experiments with the data
originating from the living lab, and evaluating the datasets against different criteria of
interest. For example, experimenters can define experiments for a domain, and test
against another instance of the same or different domain, to evaluate the reusability
of the experiment. They could also provide feedback to the testbed providers on
several aspects, including data quality, additional data sources for the relevant
domain, performance analysis of a testbed. For domain specialists, they can provide
feedback on requirements for improving the living lab experience.
Examples of experiments for External Experimenters include (but not limited to):

• Domain-specific analysis (buildings, transportation, environmental, agricultural
etc.)

• Multi-domain data analysis
• Dataset quality analysis
• system performance analysis

The type of workflows for experiments that can be conducted for living labs can be
classified as below:

• Experimenter (Alert) – In the living lab environment an experimenter may wish
to design an experiment that periodically sends alerts. Such an experimenter
will seek to monitor the living lab environment, and by using a reasoning
system (or similar data processing systems) can receive alerts to activities of
interest. For example, such an experimenter may design an experiment
monitoring the total power usage in the living lab environment, where if the
total power exceeds a certain threshold, results in a notification to the User. An
example of the workflow is shown in Figure 27 below.

• Experimenter (Hypothesis) – In the living lab environment an experimenter
may wish to design an experiment that analyses historical data to test a
hypothesis. Such an experimenter will design a question/hypothesis that would
require historical data analysis tools and methods to obtain an answer.
Examples of such questions/hypotheses include the following: an
experimenter may ask the question is there relationship between the office
temperature and activity levels (such levels will be captured by office power
consumption). An example of the workflow is shown in Figure 28 below.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 63

Figure 27. Experiment Workflow for Alerts

Figure 28. Experiment Workflow for Hypothesis

Experimenter
Retreives Datasets

of Interest

Create new set of
rules

Use existing set of
rules from
repository

Inference
determines if alert

is generated

Inference applied
on dataset using

rules selected

Experimenter
Discovers Sensing
Devices of Interest

Experimenter
Retrieves Datasets

of Interest

Choose Analysis
Tool to Apply on

Dataset
Visualize result

Experimenter
Discovers Sensing
Devices of Interest

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 64

8 CONCLUSIONS

This deliverable presented and discussed the specification and implementation of an
innovative concept Experiment-as-a-Service (EaaS). The EaaS model allows
researchers and experimenters to define and execute data-intensive experiments on
top of heterogeneous set of IoT testbeds. This is achieved by aggregating and
ensuring the interoperability of data and services offered by different platforms or
testbeds. The work discussed in this document fulfils the EaaS related requirements
specified in [3].
We took inspiration from existing work having a complementary objective in order to
design the EaaS concept. In conclusion, the Meta-Cloud architecture and its
implementation have been carried out. The use of the Meta-Cloud is explained
through the experiment and data workflows. The Meta-Cloud is employing the EaaS
model, a cornerstone component which has been designed and implemented called
FIESTA-IoT Experiment Description Specification (FEDSpec) which is capable of
hosting experiments of a specific experimenter. The Experiment Registry
Management (ERM) tool (UI & API) has been designed and implemented that allows
experimenters to easily manage and interact with FEDSpec. The integration of Node-
RED in order to generate experiment DSL automatically is discussed. The workflow
of the FIESTA-IoT Analytics Toolkit (FAT) and Experiment Execution Engine (EEE) is
specified. In addition, a concrete use case namely the LivingLab experiment is
implemented and discussed.
Nonetheless, EaaS model is a core part of the FIESTA-IoT infrastructure that allows
the consumption of aggregated data streams and services via developing
applications (experiments). The work carried out in this regard is well documented
and made available to the users (experimenters) of the FIESTA-IoT infrastructure.
The three-in-house experiments have used this model to perform their experiments.
Furthermore, fine tuning the specification and implementation of EaaS model will be
carried out after receiving feedback by third parties who will perform experiments by
joining the FIESTA-IoT consortium via open calls.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 65

REFERENCES

[1] FIESTA-IoT, “Handbook for Experimenters and Extensions”, Release 1, 2017

[2] FIESTA-IoT, “Deliverable 2.1: Stakeholders Requirements”, 2015.

[3] FIESTA-IoT, “Deliverable 2.4: FIESTA-IoT Meta Cloud Architecture”, 2015.

[4] FIESTA-IoT, “Deliverable 3.1: Semantic Models for Testbeds, Interoperability
and Mobility Support, and Best Practices V1”, 2016.

[5] FIESTA-IoT, “Deliverable 3.2: Semantic Models for Testbeds, Interoperability
and Mobility Support, and Best Practices V2”, 2016.

[6] FIESTA-IoT, “Deliverable 3.6: Concept and Development for IoT Data
Analytics and IoT Stream and Service Management”, 2017

[7] FIESTA-IoT, “Deliverable 4.1: EaaS Model Specification and Implementation”,
2016.

[8] FIESTA-IoT, “Deliverable 4.3: Authentication Authorization, Data Protection
and Reservation of Resources”, 2016

[9] FIESTA-IoT, “Deliverable 4.5: Tools and Techniques for Managing
Interoperable Data sets”, 2017

[10] FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing IoT
Experiments V1”, 2016

[11] M. Nati, A. Gluhak, J. Domaszewicz, S. Lalis, and K. Moessner, “Lessons from
SmartCampus: External Experimenting with User-Centric Internet-of-Things
Testbed,” Wireless Personal Communications, pp. 1–15, 2014.

[12] Pallot M. (2009). Engaging Users into Research and Innovation: The Living
Lab Approach as a User Centred Open Innovation Ecosystem. Webergence
Blog. http://www.cwe-projects.eu/pub/bscw.cgi/1760838?id=715404_1760838

[13] R. Agarwal, D. Fernandez, T. Elsaleh, A.Gyrard, J. Lanza, L. Sanchez, N.
Georgantas, V. Issarny, “Unified IoT Ontology to Enable Interoperability and
Federation of Testbeds”, IEEE 3rd WF-IoT, Dec 2016, Reston Virginia, US
2016.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 66

APPENDIX I- DEFINED SCHEMATA

Table 9. FEDSpec Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" targetNamespace="http://www.fiesta-iot.eu/fedspec"
 xmlns:fed="http://www.fiesta-iot.eu/fedspec"
xmlns:prt="http://www.w3.org/2007/SPARQL/protocol-types#">

 <xs:import namespace="http://www.w3.org/2007/SPARQL/protocol-types#"
 schemaLocation="sparql/protocol-types.xsd" />

 <xs:element name="FEDSpec">
 <xs:annotation>
 <xs:documentation>FIESTA-IoT Experiment Description Specification
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="fed:FEMO" />
 </xs:sequence>
 <xs:attribute name="userID" use="required" type="xs:anyURI" />
 </xs:complexType>
 </xs:element>

 <xs:element name="FEMO">
 <xs:annotation>
 <xs:documentation>FIESTA-IoT Experiment Model Object
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" ref="fed:description" />
 <xs:element minOccurs="0" maxOccurs="1" ref="fed:EDM" />
 <xs:element ref="fed:domainOfInterest" />
 <xs:element maxOccurs="unbounded" ref="fed:FISMO" />
 </xs:sequence>
 <xs:attribute name="id" use="optional" type="xs:anyURI" />
 <xs:attribute name="name" type="xs:NCName" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="description" type="xs:string" />

 <xs:element name="EDM" type="xs:string">
 <xs:annotation>
 <xs:documentation>Experiment design metadata.</xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="FISMO">
 <xs:annotation>
 <xs:documentation>FIESTA-IoT Service Model Object</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" ref="fed:description" />
 <xs:element minOccurs="0" name="discoverable" type="xs:boolean"

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 67

 default="false" />
 <xs:element ref="fed:experimentControl" />
 <xs:element ref="fed:experimentOutput" />
 <xs:element ref="fed:queryControl" minOccurs="0" />
 <xs:element name="service" nillable="false" type="xs:anyURI"
 minOccurs="0" />
 <xs:element ref="fed:rule" minOccurs="0" />
 </xs:sequence>
 <xs:attribute name="id" use="optional" type="xs:anyURI" />
 <xs:attribute name="name" type="xs:NCName" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="queryControl">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="fed:quantityKind" minOccurs="0" />
 <xs:element ref="fed:staticLocation" minOccurs="0" />
 <xs:element ref="fed:queryInterval" minOccurs="0" />
 <xs:element ref="prt:query-request" maxOccurs="1"
 minOccurs="1" />
 <xs:element maxOccurs="1" minOccurs="0" ref="fed:dynamicAttrs" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="domainKnowledge" type="xs:anyURI" />

 <xs:element name="staticLocation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="latitude" type="xs:string" />
 <xs:element name="longitude" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="queryInterval">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="fromDateTime" type="xs:dateTime" />
 <xs:element minOccurs="0" name="toDateTime" type="xs:dateTime" />
 <xs:element minOccurs="0" name="intervalNowToPast" type="xs:int" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="experimentControl">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" ref="fed:scheduling" maxOccurs="1" />
 <xs:element name="trigger" type="xs:anyURI" minOccurs="0" />
 <xs:element name="reportIfEmpty" type="xs:boolean"
 minOccurs="0" default="true" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="rule">

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 68

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="fed:ruleDefinition" />
 <xs:element ref="fed:domainKnowledge" />
 <xs:element ref="fed:quantityKind" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" />
 </xs:complexType>
 </xs:element>

 <xs:element name="ruleDefinition" type="xs:string">
 <xs:annotation>
 <xs:documentation>i.e. Jena rule or SPARQL construct
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="domainOfInterest">
 <xs:annotation>
 <xs:documentation>List of URLs linking with M3-lite taxonomy.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:list itemType="xs:anyURI" />
 </xs:simpleType>
 </xs:element>

 <xs:element name="quantityKind">
 <xs:annotation>
 <xs:documentation>List of URLs linking with M3-lite taxonomy.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:annotation>
 <xs:documentation>URL linking with M3-lite taxonomy.
 </xs:documentation>
 </xs:annotation>
 <xs:list itemType="xs:anyURI" />
 </xs:simpleType>
 </xs:element>

 <xs:element name="scheduling">
 <xs:complexType>
 <xs:all>
 <xs:element form="qualified" name="startTime" type="xs:dateTime"
 minOccurs="0" />
 <xs:element name="Periodicity" minOccurs="0" maxOccurs="1"
 type="xs:int" />
 <xs:element minOccurs="0" name="stopTime" type="xs:dateTime" />
 </xs:all>
 </xs:complexType>
 </xs:element>

 <xs:element name="experimentOutput">
 <xs:complexType>
 <xs:sequence maxOccurs="1" minOccurs="1">
 <xs:element minOccurs="0" ref="fed:file" maxOccurs="unbounded" />
 <xs:element maxOccurs="unbounded" ref="fed:widget"
 minOccurs="0" />

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 69

 </xs:sequence>
 <xs:attribute name="location" type="xs:anyURI" />
 </xs:complexType>
 </xs:element>

 <xs:element name="file">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="type" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="widget">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="fed:presentationAttr" />
 </xs:sequence>
 <xs:attribute name="widgetID" use="required" type="xs:anyURI" />
 </xs:complexType>
 </xs:element>

 <xs:element name="presentationAttr">
 <xs:complexType>
 <xs:attribute name="name" use="required" type="xs:string" />
 <xs:attribute name="value" use="required" type="xs:string" />
 </xs:complexType>
 </xs:element>

 <xs:element name="dynamicAttrs">
 <xs:annotation>
 <xs:documentation>Definition of the query dynamic attributes and
 their default values
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="predefinedDynamicAttr" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="fed:dynamicQueryInterval" minOccurs="0" />
 <xs:element ref="fed:dynamicGeoLocation" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="dynamicAttr" maxOccurs="unbounded"
 minOccurs="0">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" />
 <xs:attribute name="value" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="dynamicQueryInterval">
 <xs:complexType>
 <xs:sequence>

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 70

 <xs:element minOccurs="0" name="fromDateTime" type="xs:dateTime" />
 <xs:element minOccurs="0" name="toDateTime" type="xs:dateTime" />
 <xs:element minOccurs="0" name="intervalNowToPast" type="xs:int" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="dynamicGeoLocation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="latitude" type="xs:string" />
 <xs:element name="longitude" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

Table 10: Descriptive IDs Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
targetNamespace="urn:fiestaiot:experiment:descriptiveids:xsd:1"
 xmlns:edid="urn:fiestaiot:experiment:descriptiveids:xsd:1">

 <xs:element name="ExpDescriptiveIDs">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="edid:FemoDescriptiveID" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="description" type="xs:string" />
 <xs:element name="name" type="xs:string" />

 <xs:element name="FismoDescriptiveID">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" ref="edid:description" />
 <xs:element minOccurs="0" ref="edid:name" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:anyURI" />
 </xs:complexType>
 </xs:element>

 <xs:element name="FemoDescriptiveID">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="1" minOccurs="0" ref="edid:description" />
 <xs:element minOccurs="0" ref="edid:name" />
 <xs:element ref="edid:FismoDescriptiveID" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:anyURI" />
 </xs:complexType>
 </xs:element>

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 71

</xs:schema>

APPENDIX II- EXPERIMENT FEDSPEC

Table 11: Complete valid FEDSpec example

<?xml version="1.0" encoding="UTF-8"?>
<fed:FEDSpec
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fed="http://www.fiesta-iot.eu/fedspec"
 xmlns:prt="http://www.w3.org/2007/SPARQL/protocol-types#"
 xmlns:vbr="http://www.w3.org/2007/SPARQL/results#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.fiesta-iot.eu/fedspec file:/C:/FIESTA/FEDSpec.xsd"
 userID="testuser1">

 <fed:FEMO name="MySecondExperiment">
 <fed:description>LargeScale crowdsensing experiment</fed:description>
 <fed:domainOfInterest>http://purl.org/iot/vocab/m3-lite#Transportation
 http://purl.org/iot/vocab/m3-lite#Pollution
 http://purl.org/iot/vocab/m3-lite#City
 http://purl.org/iot/vocab/m3-lite#Health
 </fed:domainOfInterest>
 <fed:FISMO name="2ndUseCase">
 <fed:description>Over time all noise observations for a given location</fed:description>
 <fed:discoverable>true</fed:discoverable>
 <fed:experimentControl>
 <fed:scheduling>
 <fed:startTime>2016-11-08T18:50:00.0Z</fed:startTime>
 <fed:Periodicity>250</fed:Periodicity>
 <fed:stopTime>2017-11-08T18:49:59.0Z</fed:stopTime>
 </fed:scheduling>
 </fed:experimentControl>
 <fed:experimentOutput
 location="http://ExperimentServer.org/store/"
 ></fed:experimentOutput>
 <fed:queryControl>
 <prt:query-request>
 <query><![CDATA[
 # [1 / 1] visualization type: 'Gauge' and sensors
 Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
 Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
 Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
 Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
 Prefix time: <http://www.w3.org/2006/time#>
 Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
 Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
 select ?s ?tim ?val
 where {
 ?o a ssn:Observation.
 ?o ssn:observedBy ?s.
 ?o ssn:observedProperty ?qkr.
 ?qkr a ?qk.
 Values ?qk {m3-lite:Sound m3-lite:SoundPressureLevelAmbient}
 ?o ssn:observationSamplingTime ?t.
 ?o geo:location ?point.
 ?point geo:lat "4.346104E1"^^xsd:double.
 ?point geo:long "-3.80649E0"^^xsd:double.
 ?t time:inXSDDateTime ?ti.
 ?o ssn:observationResult ?or.
 ?or ssn:hasValue ?v.

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 72

 ?v dul:hasDataValue ?val.
 } group by (?s) ?tim ?val
]]></query>
 </prt:query-request>
 </fed:queryControl>
 </fed:FISMO>
 <fed:FISMO name="3rdUseCase">
 <fed:description>Over time noise observations for a given bounding
 box (time period in scheduling)</fed:description>
 <fed:discoverable>true</fed:discoverable>
 <fed:experimentControl>
 <fed:scheduling>
 <fed:startTime>2016-11-08T18:50:00.0Z</fed:startTime>
 <fed:Periodicity>250</fed:Periodicity>
 <fed:stopTime>2017-11-08T18:49:59.0Z</fed:stopTime>
 </fed:scheduling>
 </fed:experimentControl>
 <fed:experimentOutput
 location="http://ExperimentServer.org/store/"
 ></fed:experimentOutput>
 <fed:queryControl>
 <prt:query-request>
 <query><![CDATA[
 # [1 / 1] visualization type: 'Gauge' and sensors
 Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
 Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
 Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
 Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
 Prefix time: <http://www.w3.org/2006/time#>
 Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
 Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
 select ?s (max(?ti) as ?tim) ?val ?lat ?long
 where {
 ?o a ssn:Observation.
 ?o ssn:observedBy ?s.
 ?o ssn:observedProperty ?qkr.
 ?qkr a ?qk.
 Values ?qk {m3-lite:Sound m3-lite:SoundPressureLevelAmbient}
 ?o ssn:observationSamplingTime ?t.
 ?o geo:location ?point.
 ?point geo:lat ?lat.
 ?point geo:long ?long.
 ?t time:inXSDDateTime ?ti.
 ?o ssn:observationResult ?or.
 ?or ssn:hasValue ?v.
 ?v dul:hasDataValue ?val.
 {
 select (max(?dt)as ?ti) ?s
 where {
 ?o a ssn:Observation.
 ?o ssn:observedBy ?s.
 ?o ssn:observedProperty ?qkr.
 ?qkr a ?qk.
 Values ?qk {m3-lite:Sound
 m3-lite:SoundPressureLevelAmbient}
 ?o ssn:observationSamplingTime ?t.
 ?t time:inXSDDateTime ?dt.
 }group by (?s)
 }
 FILTER (
 (xsd:double(?lat) >= "-90"^^xsd:double)
 && (xsd:double(?lat) <= "90"^^xsd:double)
 && (xsd:double(?long) >= "-180"^^xsd:double)
 && (xsd:double(?long) <= "180"^^xsd:double)
)

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 73

 } group by (?s) ?tim ?val ?lat ?long
]]></query>
 </prt:query-request>
 </fed:queryControl>
 </fed:FISMO>
 <fed:FISMO name="4thUseCase">
 <fed:description>3rd usecase with noise more than x dB(A)</fed:description>
 <fed:discoverable>true</fed:discoverable>
 <fed:experimentControl>
 <fed:scheduling>
 <fed:startTime>2016-11-08T18:50:00.0Z</fed:startTime>
 <fed:Periodicity>250</fed:Periodicity>
 <fed:stopTime>2017-11-08T18:49:59.0Z</fed:stopTime>
 </fed:scheduling>
 <fed:reportIfEmpty>false</fed:reportIfEmpty>
 </fed:experimentControl>
 <fed:experimentOutput
 location="http://ExperimentServer.org/store/">
 <fed:file>
 <fed:type>application/xml</fed:type>
 </fed:file>
 </fed:experimentOutput>
 <fed:queryControl>
 <prt:query-request>
 <query><![CDATA[
 # [1 / 1] visualization type: 'Gauge' and sensors
 Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
 Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
 Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
 Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
 Prefix time: <http://www.w3.org/2006/time#>
 Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
 Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
 select ?s (max(?ti) as ?tim) ?val ?lat ?long
 where {
 ?o a ssn:Observation.
 ?o ssn:observedBy ?sensorID.
 ?o ssn:observedProperty ?qkr.
 ?qkr a ?qk.
 Values ?qk {m3-lite:Sound m3-lite:SoundPressureLevelAmbient}
 ?o ssn:observationSamplingTime ?t.
 ?o geo:location ?point.
 ?point geo:lat ?latitude.
 ?point geo:long ?longitude.
 ?t time:inXSDDateTime ?ti.
 ?o ssn:observationResult ?or.
 ?or ssn:hasValue ?v.
 ?v dul:hasDataValue ?value.
 FILTER (
 (xsd:double(?latitude) >= "-90"^^xsd:double)
 && (xsd:double(?latitude) <= "90"^^xsd:double)
 && (xsd:double(?longitude) >= "-180"^^xsd:double)
 && (xsd:double(?longitude) <= "180"^^xsd:double)
)
 FILTER(?value>="50"^^xsd:double)
 FILTER(?ti > "%%fromDateTime%%"^^xsd:dateTime && ?ti
 < "%%toDateTime%%"^^xsd:dateTime)
 } group by ?sensorID ?time ?value ?latitude ?longitude

]]></query>
 </prt:query-request>
 <fed:dynamicAttrs>
 <fed:predefinedDynamicAttr>
 <fed:dynamicQueryInterval>
 <fed:intervalNowToPast>600000</fed:intervalNowToPast>

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 74

 </fed:dynamicQueryInterval>
 </fed:predefinedDynamicAttr>
 </fed:dynamicAttrs>
 </fed:queryControl>
 </fed:FISMO>
 <fed:FISMO name="5thUseCase">
 <fed:description>3rd usecase with noise less than x dB(A)</fed:description>
 <fed:discoverable>true</fed:discoverable>
 <fed:experimentControl>
 <fed:scheduling>
 <fed:startTime>2016-11-08T18:50:00.0Z</fed:startTime>
 <fed:Periodicity>250</fed:Periodicity>
 <fed:stopTime>2017-11-08T18:49:59.0Z</fed:stopTime>
 </fed:scheduling>
 </fed:experimentControl>
 <fed:experimentOutput location="http://ExperimentServer.org/store/">
 </fed:experimentOutput>
 <fed:queryControl>
 <prt:query-request>
 <query><![CDATA[
 # [1 / 1] visualization type: 'Gauge' and sensors
 Prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
 Prefix iotlite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
 Prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#>
 Prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
 Prefix time: <http://www.w3.org/2006/time#>
 Prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#>
 Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
 select ?s (max(?ti) as ?tim) ?val ?lat ?long
 where {
 ?o a ssn:Observation.
 ?o ssn:observedBy ?s.
 ?o ssn:observedProperty ?qkr.
 ?qkr a ?qk.
 Values ?qk {m3-lite:Sound m3-lite:SoundPressureLevelAmbient}
 ?o ssn:observationSamplingTime ?t.
 ?o geo:location ?point.
 ?point geo:lat ?lat.
 ?point geo:long ?long.
 ?t time:inXSDDateTime ?ti.
 ?o ssn:observationResult ?or.
 ?or ssn:hasValue ?v.
 ?v dul:hasDataValue ?val.
 {
 select (max(?dt)as ?ti) ?s
 where {
 ?o a ssn:Observation.
 ?o ssn:observedBy ?s.
 ?o ssn:observedProperty ?qkr.
 ?qkr a ?qk.
 Values ?qk {m3-lite:Sound
 m3-lite:SoundPressureLevelAmbient}
 ?o ssn:observationSamplingTime ?t.
 ?t time:inXSDDateTime ?dt.
 }group by (?s)
 }
 FILTER (
 (xsd:double(?lat) >= "-90"^^xsd:double)
 && (xsd:double(?lat) <= "90"^^xsd:double)
 && (xsd:double(?long) >= "-180"^^xsd:double)
 && (xsd:double(?long) <= "180"^^xsd:double)
)
 FILTER(?val<="45"^^xsd:double)
 } group by (?s) ?tim ?val ?lat ?long
]]></query>

FIESTAIoT-WP4-D4.2-EaaS_Model_Specification_and_Implementation-300617-Draft

Copyright ã 2017 FIESTA-IoT Consortium 75

 </prt:query-request>
 </fed:queryControl>
 </fed:FISMO>
 </fed:FEMO>
</fed:FEDSpec>

