
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FIESTA-IoT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any

third party, in whole or in parts, except with prior written consent of the consortium.

HORIZONS 2020 PROGRAMME
Research and Innovation Action – FIRE Initiative

Call Identifier: H2020–ICT–2014–1

Project Number: 643943
Project Acronym: FIESTA-IoT

Project Title: Federated Interoperable Semantic IoT/cloud
Testbeds and Applications

D3.6 Concept and Development for IoT
Data Analytics and IoT Stream and

Service Management

Document Id: FIESTAIoT-WP3-D3.6-
ConceptDevelopmentDataAnalyticsServiceManagement-
V04.doc

File Name: FIESTAIoT-WP3-D3.6-
CConceptDevelopmentDataAnalyticsServiceManagement-V04.doc

Document reference: Deliverable 3.6
Version: V04
Editor: Alireza Ahrabian, Tarek Elsaleh, Francois Carrez
Organisation: UNIS
Date: 26 / 10 / 2017
Document type: Report, Other
Dissemination level: PU

Copyright 2017 National University of Ireland - NUIG / Coordinator (Ireland), University of
Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en
Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom), Unparallel

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 2

Innovation, Lda - UNINNOVA (Portugal), Easy Global Market - EGM (France), NEC Europe Ltd. NEC
(United Kingdom), University of Cantabria UNICAN (Spain), Association Plate-forme Telecom -
Com4innov (France), Research and Education Laboratory in Information Technologies - Athens
Information Technology - AIT (Greece), Sociedad para el desarrollo de Cantabria – SODERCAN
(Spain), Ayuntamiento de Santander – SDR (Spain), Korea Electronics Technology Institute KETI,
(Korea).

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments
V01 Alireza Ahrabian UNIS 08/05/2017 Initial Document Template

V01 Alireza Ahrabian UNIS 25/06/2017

Updated content for FIESTA-IoT
Analytics. Updated table of contents

for FIESTA-IoT Reasoning and
Monitoring

V01 Rachit Agarwal INRIA 22/08/2017 Platform Monitoring

V01 Hung Nguyen/
Elias Tragos NUIG 17/09/2017 Reasoning

V02 Ronald Steinke/
Alireza Ahrabian FOKUS/UNIS 27/09/2017 Testbed Monitoring and content

merging

V03 Alireza Ahrabian UNIS 06/10/2017 Document Ready for Review

V03

Alireza Ahrabian/
Hung Nguyen/
Elias Tragos/

Rachit Agarwal/
Ronald Steinke

UNIS/NUIG/

INRIA/FOKUS
23/10/2017

QR’s: Paul Grace (ITINNOV) and
Tiago Teixeira (UNPARALLEL)

TR’s: Nikos Kefalakis (AIT) and Jorge
Lanza Calderón (UNICAN)

V04 Alireza Ahrabian,
Tarek Elsaleh UNIS 26/10/2017 Final version after reviewer

comments

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 2

TABLE OF CONTENTS
1 INTRODUCTION ... 5

1.1 EXECUTIVE SUMMARY .. 5
2 FIESTA-IOT ANALYTICS ... 6

2.1 INTRODUCTION .. 6
2.1 COMPONENT API DESCRIPTION .. 7
2.2 METHODS AND PARAMETERS .. 7

2.2.1 Set of Methods... 7
2.2.2 Methods and Parameters Description ... 9
2.2.3 Error Messages ... 11

2.3 FIESTA-IOT ANALYTICS USE CASE .. 12
2.3.1 Use Case Example 1 – Correlation Analysis ... 12
2.3.2 Use Case Example 2 – Clustering... 14

3 FIESTA-IOT REASONING .. 16

3.1 INTRODUCTION .. 16
3.2 ARCHITECTURE .. 16
3.3 REASONING API .. 18

3.3.1 Rule Resource ... 19
3.3.1.1 Get all rules API .. 20
3.3.1.2 Get Rule by ID API .. 21
3.3.1.3 Create rule .. 23
3.3.1.4 Update Rule API ... 26
3.3.1.5 Rule validation .. 27

3.3.2 Register Rule Resource .. 28
3.3.2.1 Get all registered rules API ... 29
3.3.2.2 Get register rule by id API ... 31
3.3.2.3 Register rule API ... 32
3.3.2.4 Update register rule API .. 33

3.3.3 Execution Resource .. 34
3.3.3.1 Get All executions ... 34
3.3.3.2 Get Specific Execution .. 36
3.3.3.3 Execute Rule ... 36

4 FIESTA-IOT MONITORING .. 39

4.1 TESTBED MONITORING ... 39
4.1.1 Provided Features ... 40
4.1.2 Integration into the platform ... 41
4.1.3 Monitoring Tests and Collected Quantities .. 41
4.1.4 Components .. 42

4.1.4.1 Dashboard .. 42
4.1.4.2 Detailed View .. 42
4.1.4.3 Testbed Management ... 43
4.1.4.4 Notification .. 43

4.1.5 Separation to other components ... 43
4.2 FIESTA-IOT PLATFORM MONITORING .. 43

4.2.1 Install and Run ... 44
4.2.1.1 Installations on Graylog VM .. 45
4.2.1.2 Installations on FIESTA-IoT Platform machine ... 47

4.2.2 Graylog web Dashboard .. 49

5 SUMMARY .. 51

REFERENCES .. 52

APPENDIX I REASONING EXAMPLES .. 53

A1.1 RULE RESOURCE API .. 53
A1.1.1 Create rule ... 53
A1.1.2 Update rule ... 54
A1.1.3 Validate rule ... 56

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 3

A1.2 REGISTER RULE RESOURCE ... 57
A1.2.1 Rule registration ... 57
A1.2.2 Updating rule registration ... 58

A1.3 EXECUTION RESOURCE .. 59
A1.3.1 Get specific execution .. 59
A1.3.3 Execute rule ... 62

LIST OF FIGURES

FIGURE 1: FIESTA-IOT ANALYTICS SERVICE INTERACTION ... 6
FIGURE 1: HTTP REQUEST JSON OBJECT ... 7
FIGURE 3: SPARQL QUERY BODY FOR OBTAINING POWER SENSOR DATA AND TIME STAMPS 13
FIGURE 4: POST REQUEST BODY FOR FIESTA-IOT ANALYTICS TOOL (SPARQL SENTENCE SHOWN IN FIGURE

3) .. 13
FIGURE 5: CORRELATION BETWEEN SENSORS ... 14
FIGURE 6: POST REQUEST FOR FILTERING AND CLUSTERING ... 14
FIGURE 7: DATA CLUSTERING ... 15
FIGURE 8: FIESTA-IOT REASONING ARCHITECTURE ... 17
FIGURE 9: EXAMPLE SEQUENCE DIAGRAM FOR CREATING A NEW REASONING RULE 17
FIGURE 10: EXAMPLE SEQUENCE DIAGRAM FOR CREATING AND RUNNING A NEW RULE EXECUTION. 18
FIGURE 11: REASONING API .. 19
FIGURE 12: RULE RESOURCE API LISTING ... 20
FIGURE 13: GET ALL RULE EXAMPLE RESPONSE .. 21
FIGURE 14: GET RULE BY ID SAMPLE RESPONSE ... 23
FIGURE 15: LIST ALL API IN REGISTER RULE RESOURCE .. 29
FIGURE 16: GET ALL REGISTER RULE SAMPLE RESPONSE .. 30
FIGURE 17: RULE EXECUTION API .. 34
FIGURE 18: EXAMPLE EXECUTE RULE RESPONSE .. 38
FIGURE 19: THE TESTBED MONITORING TOOL IN THE FIESTA-IOT PLATFORM ... 39
FIGURE 20: THE TESTBED MONITORING DASHBOARD .. 40
FIGURE 21: THE TESTBED MONITORING DETAILED VIEW ... 42
FIGURE 22: GRAYLOG ARCHITECTURE. ... 44
FIGURE 23: GRAYLOG QUICK ACCESS DASHBOARD .. 50

LIST OF TABLES

TABLE 1: PRE-PROCESSING TECHNIQUES LIST.. 7
TABLE 2: UNSUPERVISED LEARNING TECHNIQUES LIST .. 8
TABLE 3: SUPERVISED LEARNING TECHNIQUES LIST .. 8
TABLE 4: OTHER METHODS LIST ... 9
TABLE 5: LIST OF METHODS AND PARAMETERS FOR PRE-PROCESSING TECHNIQUES. 9
TABLE 6: LIST OF METHODS AND PARAMETERS FOR UNSUPERVISED LEARNING TECHNIQUES. 10
TABLE 7: LIST OF METHODS AND PARAMETERS FOR SUPERVISED LEARNING TECHNIQUES. 10
TABLE 8: LIST OF ERROR MESSAGES AND CORRESPONDING DESCRIPTIONS. .. 12
TABLE 9: GET ALL RULES API .. 21
TABLE 10: GET RULE BY ID API .. 22
TABLE 11: RULE CREATION FOR SEMANTIC EXPERT API .. 25
TABLE 12: UPDATE RULE API ... 27
TABLE 13: RULE VALIDATION API .. 28
TABLE 14: GET ALL REGISTER RULE API ... 30
TABLE 15: GET RULE BY ID .. 31
TABLE 16: REGISTER RULE API .. 33
TABLE 17: UPDATE REGISTER RULE API ... 34
TABLE 18: GET ALL EXECUTIONS API ... 35
TABLE 19: GET DETAIL EXECUTION API ... 36
TABLE 20: EXECUTE RULE API ... 37
TABLE 21 REQUIREMENTS .. 45

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 4

TERMS AND ACRONYMS

API Application Programming Interface
CQELS Continuous Query Evaluation over Linked Streams

GUI Graphical User Interface
ICO Internet Connected Object
IoT Internet of Things

Jena Framework to build semantic web applications
Jena TDB Database to store semantic information called triple

KAT Knowledge Acquisition Toolkit
LD4Sensors A tool to link sensor data

LER Linked Edit Rules

LOD Linked Open Data
LOV Linked Open Vocabularies

LOV4IoT Linked Open Vocabularies for Internet of Things (LOV4IoT)
LSM Linked Sensor Middleware
M3 Machine to Machine Measurement framework

SAO Stream Annotation Ontology
S-LOR Sensor-based Linked Open Rules
SDR Semantic Data Repository
SSN Semantic Sensor Networks

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 5

1 INTRODUCTION

1.1 Executive Summary

FIESTA-IoT facilitates the capture, storage and processing of data generated from a
variety of testbeds in an interoperable manner. This document provides a description
of the tools developed for processing data that is captured and stored by the FIESTA-
IoT platform. Namely, the FIESTA-IoT Analytics, FIESTA-IoT Reasoning and FIESTA-
IoT Monitoring tools.

The FIESTA-IoT Analytics tool uses the concept of historical data analysis as a web
service, where the experimenter can select a variety of methods for the processing of
data. This deliverable provides an explanation of the function for each technique along
with a description of the tools parameters and error responses when making a request.
FIESTA-IoT Reasoning provides a reasoning engine web service for obtaining
actionable knowledge from streamed data sets. This is achieved by using a set of rules
(i.e. if-then conditions) that are applied to the data. The tool provides the means for the
experimenter to create rules along with rule execution and storage. This document
provides a detailed explanation of the FIESTA-IoT Reasoning tool, where examples of
the tools use are also provided.

Finally, this document provides a detailed description of the FIESTA-IoT monitoring
tool. That is, the tool continuously collects information regarding testbed performance.
The tool provides a means of visually evaluating testbed status and performance.
Furthermore, this tool provides a convenient method of assessing malfunctions at the
sensor level for a given testbed.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 6

2 FIESTA-IOT ANALYTICS

In this section, we provide an explanation of the proposed tool in relation to the
FIESTA-IoT platform.

2.1 Introduction

This project proposes to provide data analysis tools as a web service, to enable a wider
range of data consumer access to advanced data analysis tools. These algorithms are
made available as HTTP rest methods; a data consumer can then run these algorithms
on their data set by making the appropriate REST call as described in this section. A
description of the data analysis tools that will be provided along with the components
interaction within the FIESTA-IoT architecture was presented in deliverable D3.5 [1]. It
was identified that the following data analysis tools would be provided, namely: 1) pre-
processing methods, 2) supervised learning, 3) unsupervised learning algorithms and
finally 4) other techniques and methods (examples of techniques belonging to this
class are spectral and dependence estimation methods). In the subsequent sections
we provide an overview of the API for interacting with the component. Furthermore, a
detailed description of methods and parameters that are provided by the proposed tool,
along with error messages that may arise is provided. Finally, use case examples of
the proposed tool are also presented.

Figure 1: FIESTA-IoT Analytics Service Interaction

FIESTA-IoT Analytics Service (DAaaS)

Testbed 1 Testbed 2 Testbed n

IoT Registry
(Observations)

Experiment
Repository

SPARQL query (result in CSV)SPARQL query (result in CSV)

Response (CSV)

Experiment
Executer

Service Endpoint

IoT Registry Client

Core

Supervised
Learning

Unsupervised
Learning

Other methods e.g.
CorrelationPre-processing

SPARQL
query

DA method
Target URL

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 7

2.1 Component API Description

In order to invoke the proposed FIESTA-IoT Analytics service, a HTTP POST request
must be made. The body of the request contains a JSON object that is shown in Figure
1. Namely, the list of methods and the corresponding parameters are provided along,
with the SPARQL query and endpoint where the data can be obtained. A detailed
description of the methods and the corresponding parameters are provided in the
subsequent sections. It should be noted that a detailed explanation of the components
interaction with the FIESTA-IoT platform can be found in Section 7.2 of deliverable 4.2
[2].

2.2 Methods and Parameters

This section provides a description of the functionality of the complete set of methods
provided in the FIESTA-IoT Analytics tool, as well as the input parameters required for
each method. Furthermore, a complete list of error messages is also presented.

2.2.1 Set of Methods

The corresponding list of methods and the corresponding functionality is presented
below:

1. Pre-processing

Pre-processing techniques enable the data consumer to remove corrupted and noisy
data points from the original raw time series data. The FIESTA-IoT Analytics tool
provides two such methods, namely, digital filtering and outlier removal (please refer
to Table 1 for list and description of the relevant methods).

Method Method Description
Outlier A method for removing outliers from de-trended signals. The

method used is the winsorization technique.
FilterData An implementation of a finite impulse response (FIR) digital filter.

Table 1: Pre-Processing Techniques List

2. Unsupervised Learning

{
 "Method": ["Method 1","Method 2","Method 3"],
 "Parameters": ["Parameters 1", "Parameters 2", "Parameters 3"],
 "SPARQLquery":"SPARQL request string"
 "SPARQLendpoint":"SPARQL endpoint"
}

Figure 2: HTTP Request JSON Object

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 8

This tool provides exploratory data analysis tools, namely unsupervised machine
learning techniques to enable the experimenter to discover patterns of interest in the
data set being analysed (please refer to Table 2 for list and description of the relevant
methods).

Method Method Description
KMeans This technique clusters the data. That is, the data is grouped

together based on a minimization of the distance between the
data points and the centroids of the clusters.

PCA Dimensionality reduction technique that can also be used for
inferring the directions of variability in the data set.

Table 2: Unsupervised Learning Techniques List

3. Supervised Learning

Many data analysis problems require the experimenter to either determine a
relationship between a set of input and output data points, or to obtain an estimate of
the output data points given the input data points. To this end, both linear and nonlinear
supervised learning techniques are provided (please refer to Table 3 for list and
description of the relevant methods).

Method Method Description
LinReg This method is an implementation of linear regression. Linear

regression finds a linear relationship between the input data set
and output data points.

KNNreg K-Nearest Neighbours is a location based non-parametric
approach for estimating the relationship between the input and
output data points.

Table 3: Supervised Learning Techniques List

4. Other Methods

Data analysis tools that are not applicable to the above categories, are listed in the
other methods field. This tool provides spectral analysis and data dependency
estimation tools for the experimenter. Spectral estimation tools are particularly useful
for designing digital filters for removing noise, while data dependency estimation tools
are particularly useful for linear regression.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 9

Method Method Description
FFT The Fast Fourier Transform, a method for determining the spectral

content of a set of data points.
Periodogram Periodogram function obtains an estimate of the power of a set of

data points for a given frequency. Particularly useful in cases
where data is corrupted with unwanted noise.

Correlation Estimates the linear dependence between sets of
variables/sensors.

Table 4: Other Methods List

2.2.2 Methods and Parameters Description

In the previous section 2.2.1, a description of the methods included in the FIESTA-IoT
Analytics tool was provided. In this section, the description of the list of methods and
the corresponding input parameters (along with the parameter data type) is presented.

1. Pre-processing

Table 5 provides a description of the input parameters for the pre-processing methods.

Method Parameters Description
Outlier Thresh Value between 0 and 1, selects the percentage of tail

values to remove from the ordered time series data.
Type: Float

FilterData Type Select between, “B” Bandpass Filter, “L” Lowpass
filter and Highpass filter “H”. Type: String

 cutoff_1 For the respective filters is the first normalised cutoff
frequency, between 0 and 0.5. Type: Float

 cutoff_2 For bandpass filter only, the second cutoff frequency.
Type: Float

 numtaps Filter length. Usually select 30. Type: Integer

Table 5: List of methods and parameters for pre-processing techniques.

2. Unsupervised Learning

Table 6 provides a description of the input parameters for the unsupervised learning
methods.

Method Parameters Description
KMeans NumClusters The number of clusters to select. Type: Integer
 Mode Select either, “CL” the cluster label assigned to each

data point, “Cent” the estimated centroid for each

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 10

cluster group or “Sil” to determine the silhouette
coefficient. Type: String

PCA Mode Select either, “ExpVar” the explained variance for
the different principal components, or “Comp” the
principal component loadings that is the direction in
the data corresponds to the highest variance. Type:
String

Table 6: List of methods and parameters for unsupervised learning techniques.

3. Supervised Learning

In Table 7 a description of the input parameters for the supervised learning methods is
provided.

Method Parameters Description
LinReg Type Select between, “Param” the estimated parameters

of the regression model, and “Predict” the estimate
of the output given the test data. Type: String

 Dependant Select the column index corresponding to the
dependent variable. Type: Integer

 Ratio Select the ratio of the training data to test data. Value
between 0 and 1. Type: Float

KNNreg Num Selects the number of nearest neighbours. Type:
Integer

 Dependant Select the column index corresponding to the
dependent variable. Type: Integer

 Ratio Select the ratio of the training data to test data. Value
between 0 and 1. Type: Float

Table 7: List of methods and parameters for supervised learning techniques.

4. Other Methods

The corresponding methods do not require any parameters: FFT, Periodogram and
Correlation.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 11

2.2.3 Error Messages

The FIESTA-IoT Analytics tool has integrated into the response of a given data
analysis query a set of error messages to enable both the experimenter and potentially
the FIESTA-IoT platform to identify the origin of the error.
Error Message Description
Incorrect JSON Format The input JSON object has been specified

incorrectly. Response Code: 400
Incorrect JSON labels The JSON keys do not follow the format specified

in Figure 1. Response Code: 400
Content In the Incorrect Format The content type in the request header is

incorrectly specified. It should be: application/json.
Response Code: 400

userId Header not included userId key and/or value not included in the request
header. Response Code: 400

femoId Header not included femoId key and/or value not included in the request
header. Response Code: 400

jobId Header not included jobId key and/or value not included in the request
header. Response Code: 400

Unable to connect to SPARQL
endpoint

Either invalid SPARQL endpoint address or a
timeout owing to slow response of the SPARQL
endpoint. Response Code: 400

Unable to retrieve data Data was not retrieved from the SPARQL endpoint.
Response Code: 200

Length of data too small The number of data points are too small for the
FIESTA-IoT Analytics tool. Response Code: 200

Either time stamp or data
variable missing

For a given timestamp/data value column pair,
either timestamp or the data value column is
missing from the data requested for processing.
Response Code: 400

Incorrect Method Name Incorrectly specified method name: either
technique name does not exist or spelling mistake.
Response Code: 400

Incorrect Method Parameter
Specification

Incorrectly specified method input parameters.
Response Code: 400

Unable to store/or confirm
storage of processed data

Storage of the processed data could not be
confirmed. Response Code: 400

Incorrect Sequence of Methods Certain combinations of data analysis methods are
not allowed, owing to incompatibility with other
techniques. Response Code: 400

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 12

No. of parameters not equal to
the No. of methods

For a given method a parameter is missing or
equivalently for a given parameter a method is
missing. Response Code: 400

Error A general error in the processing of the data points.
Response Code: 400

Table 8: List of error messages and corresponding descriptions.

2.3 FIESTA-IoT Analytics Use Case

In this section two use case examples of the FIESTA-IoT Analytics tool are provided.

2.3.1 Use Case Example 1 – Correlation Analysis

In the first use case, we illustrate the FIESTA-IoT Analytics tools performance in
correlation analysis of data (using power data from the UNIS testbed, where an
example of the SPARQL query request is shown in Figure 3) drawn from the IoT-
Registry. Correlation enables the experimenter to determine dependencies/similarities
that may exist between sensors. Such information can then be used to infer if sensors
are measuring phenomena with similar dynamics. To this end, the FIESTA-IoT
Analytics tool first applies an outlier removal algorithm (for suppressing artefacts that
would reduce the effectiveness of carrying out correlation analysis), where then the
correlation function is then called. The JSON body of the HTTP POST request sent to
the FIESTA-IoT Analytics tool is shown in Figure 4.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 13

Figure 3: SPARQL query body for obtaining power sensor data and time stamps

Figure 4: POST request body for FIESTA-IoT Analytics tool (SPARQL sentence
shown in Figure 3)

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 14

The outcome of the FIESTA-IoT Analytics tool is shown in Figure 5. It should be noted
that along the diagonal of the matrix, the output is equal to one (unless the data set is
missing and the tool has set the correlation equal to zero) as it corresponds to the self
correlation of the sensor. While the off-diagonal elements correspond to the correlation
between different sensors. From Figure 5, it can be observed that most of the power
sensors are uncorrelated with each other. This indicates that the activity of each sensor
is largely independent of the neighbouring sensors, thereby indicating that activity
profiles of each sensor are largely dissimilar.

Figure 5: Correlation between sensors

2.3.2 Use Case Example 2 – Clustering

In the next use case, a clustering algorithm was applied to the data points obtained
from the SPARQL query shown in Figure 3. Clustering data sets enables the
experimenter to identify patterns of interest that may arise in the data. Figure 6
illustrates the POST request made to the FIESTA-IoT Analytics tool, where a Low pass
digital filtering was first applied to reduce high frequency noise artefacts.

Figure 6: POST request for filtering and clustering

To determine the correct number of groups so as to cluster the data appropriately, a
measure of fit known as the silhouette coefficient (SC) was used. The coefficient is
between [-1,1], where 1 is generally a good fit, that is the clusters are well separated
and -1 is a poor fit. Using this approach, it was determined that 4 clusters with a
silhouette coefficient of 0.94 was to be used. Figure 7 illustrates the label for each time
point, that is, the “state of activity” for each time point. To determine the magnitude of
the activity level, the magnitude of the centroids were taken. The centroids of the
respective clusters were: Cluster 1 = 2303, Cluster 2 = 2075, Cluster 3 = 2380 and
Cluster 4 = 2572, where high and low activities can then be determined. From Figure
7 we can observe that the nominal activity of the sensors is in cluster 1. Low activities
corresponding to cluster 2 were capture between samples 2-8, 10-13 and 160-180.
While high activity clusters 3 and 4 where for the samples indices greater than 246.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 15

Such analysis enables the experimenter to reduce the dimensionality of highly complex
data sets, to make simple inferences.

Figure 7: Data clustering

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 16

3 FIESTA-IOT REASONING

3.1 Introduction

The FIESTA-IoT Reasoning component is an implementation of a semantic reasoner
to work on top of the FIESTA-IoT platform. A semantic reasoning engine is a rule based
engine that is able to infer logical consequences from a set of IoT measurements. In
doing so, the FIESTA-IoT Reasoner simplifies the creation of rules, which are
generated and stored in a rule repository. This component provides a set of API
services and a User Interface (UI) for experimenters, making it easy to design and
execute rules base on the Apache Jena open source framework1. The reasoning
module can be used by experimenters to create notifications or alerts based on the
rules that they set for specific types of measurements coming from the FIESTA-IoT
testbeds. For example, the experimenters might set rules in the form of expressions
“if (condition) then (result)” as below:

• If (temperature) > (25degrees) then (notify_hot)

• If (speed) < (30km/h) then (notify_traffic)

• If (temperature) < (19degrees) and (humidity) > (60%) then (notify_unhealthy)

3.2 Architecture

In Figure 8 we provide an overview of the architecture of the FIESTA-IoT Reasoning
engine. The central point of the architecture is the Reasoning Service Engine, which is
the main component responsible for performing the reasoning services. This
component is also connected with the FIESTA-IoT services and specifically with the
IoT Registry (through its service endpoints) for getting the list of available sensors and
quantity kinds for creating the rules and the measurements, upon which the rules will
be executed.
The Reasoner Service Engine exposes three APIs for (i) Rule Creation, (ii) Rule
Registration and (iii) Rule Execution, which are explained in detail in the next
subsections. These APIs are connected with a MySQL database for storing the rules
and the results of the executions.
The experimenters are provided with two options for using the Reasoning Engine: (i)
through a web application user interface developed using AngularJS or (ii) thorough
their own client application using REST APIs provided by the Reasoning Engine.

1 https://jena.apache.org/index.html

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 17

Figure 8: FIESTA-IoT Reasoning Architecture
In Figure 9 an example sequence diagram for creating a new rule is depicted. The first
part shows the authentication procedure so that the experimenter can get a new token
to be used for the next calls. When the experimenter wants to create a new rule, he
sends through the API the new request to the reasoner service engine including all
data with respect to the quantity kind, the sensor id (to whom the rule will be applied),
etc. The Reasoner Service Engine requests then the validation that the information for
the sensor and the quantity kind are ok. If this validation succeeds, the Reasoner
Service Engine sends the data to the MySQL DB to add the new rule. The MySQL DB
then replies with the validation (or error) message which is forwarded to the
experimenter.

Experimenter Reasoner Service
Engine (UI, API)

IoT-Registry Security
Component

Log-in (enter credentials)

user credentials

SSO token ID

Get user by SSO token

UserID, Role, ….

MySQL DB

Validates the requested sensor and quantity kind

Validation message The authentication
procedure can be skipped
if the experimenter
already has a valid token

Figure 9: Example sequence diagram for creating a new reasoning rule

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 18

In Figure 10 an example sequence diagram for executing a rule is depicted. Same as
before the authentication process precedes anything else. Then, the experimenter
through the API sends a request for a new execution, by submitting the required data
for the rule to be executed. The Reasoner Service Engine requests from the MySQL
DB the list of registered rules, to validate the requested rule. Then the Reasoner
Service Engine stores the information for the new execution to the MySQL DB. Next,
the Reasoner Service Engine sends a request to the IoT-Registry for the observations
of the selected sensor (for whom the rule is applied) and the selected time period.
Finally, the response of the rule is sent to the experimenter.

Experimenter Reasoner Service
Engine (UI, API)

IoT-Registry Security
Component

Log-in (enter credentials)

user credentials

SSO token ID

Get user by SSO token

UserID, Role, ….

MySQL DB

Get observations for target sensor

List observations

The authentication
procedure can be skipped
if the experimenter
already has a valid token

Figure 10: Example sequence diagram for creating and running a new rule
execution.
The rest of the section below describes the implementation and usage of the
Reasoning Services, while the UI tools for the Reasoning Engine will be described in
Deliverable 4.8 [3]. The following sections present some example calls of the
respective APIs. More detailed calls and the related response bodies are provided in
the Annex.

3.3 Reasoning API

Currently, the FIESTA-IoT Reasoning module supports REST APIs for (i) Rule
creation, (ii) Rule Registration and (iii) Rule Execution in the following three resources:
(i) rule-resource, (ii) register-rule-resource and (iii) execution-resource, as presented
in Figure 11. The documentation of the APIs can be found on the FIESTA-IoT portal,
under the Help menu. Below, we describe the usage of these APIs.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 19

Figure 11: Reasoning API

All requests to the FIESTA-IoT Reasoning API must provide a header with:
- Content-Type: application/json
- iPlanetDirectoryPro: SSO Token obtained from the FIESTA IoT authentication API.

3.3.1 Rule Resource

The Rule Resource API provides several services that can be used by experimenters
for creating, editing, updating and validating reasoning rules. Figure 12 presents the
list of services currently supported in the rule-resource API.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 20

Figure 12: Rule resource API listing

3.3.1.1 Get all rules API

The “getAllReasonings” service (presented in Table 9) provides the function for
experimenters to get the list of currently created rules, using parameters such as page,
size, and sort. Since the list of created rules can be quite long in real deployments, the
experimenter can select the rules according to the following parameters below to limit
the number of rules.

Title Get all Rules API
URL . /api/reasonings

Method GET
URL

Params
Optional
page=[alphanumeric]

sets the starting page number for the rules to be returned. For
example, setting the page to “5”, the reasoning engine will return
the rules from number size*5 until size*6-1, depending on the size
parameter below.

size=[alphanumeric]
sets the number of rules per page to be returned.

sort=[string]
sets the sorting criteria for the returned result set, i.e. ascending
or descending.

example:
page=3
size=30
sort=asc

Success
Response

Example:
Code: 200 OK

Error
Response

Example:
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found

Sample
Call

curl -X GET --header 'Accept: application/json'
'https://platform.fiesta-iot.eu/reasoner-
engine/api/reasonings?page=1&size=10&sort=asc'

or

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 21

https://platform.fiesta-iot.eu/reasoner-
engine/api/reasonings?page=1&size=10&sort=asc

Notes This is where all uncertainties, commentary, discussion etc. can go. I
recommend timestamping and identifying oneself when leaving comments
here.

Table 9: Get All rules API
In Figure 13 an example of the response of the “getAllReasonings” service is provided.
The response body includes a json array with the json strings presenting the
parameters of each rule. The response code provides the http response which can be
the verification that the request was successful or if there are any issues or errors.

Figure 13: Get All rule example response

3.3.1.2 Get Rule by ID API

Experimenters can also query the reasoning engine to get a specific rule by providing
the rule identification number. This can be done by using the “getReasoning” service
of the rule-resource API, using as a parameter only the rule ID, as seen in Table 10.
An example of the request for getting a rule by its id is also provided in the table. If the
user is authenticated with the FIESTA-IoT platform, the request is as simple as

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 22

accessing the URL https://platform-dev.fiesta-iot.eu/reasoner-
engine/api/reasonings/{rule_id}.

Title Get Rule by ID (getReasoning)
URL . /api/reasonings/{id}

Method GET
URL

Params
Required:
id=[integer]

The rule id to be returned

example: id=12

Success
Response

Example:
Code: 200 OK

Error
Response

Example:
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found

Sample Call curl -X GET --header 'Accept: application/json'
'https://platform.fiesta-iot.eu/reasoner-
engine/api/reasonings/3'

OR

https://platform.fiesta-iot.eu/reasoner-
engine/api/reasonings/3

Notes -

Table 10: Get rule by ID API

https://platform-dev.fiesta-iot.eu/reasoner-engine/api/reasonings/%7brule_id%7d
https://platform-dev.fiesta-iot.eu/reasoner-engine/api/reasonings/%7brule_id%7d

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 23

Figure 14 shows the results of the execution of the query for getting rule by its id. As it
can be seen, this time the result is a single json string with the parameters of the rule.

Figure 14: Get rule by ID sample response

3.3.1.3 Create rule

When an experimenter creates a rule, basically he creates a template for the rule,
defining the name, description, the quantity kind that the rule should check and an
example of sensor from which the rule will check its measurements.
As discussed in Section 3.2, there are two ways for experimenters to create a
reasoning rule, as semantic experts and as non-semantic experts. This was
considered as mandatory in FIESTA-IoT in order to simplify the process of creating
rules even for users that do not know about RDF and SPARQL queries. Thus, in the
reasoning API we provide two services, the “createReasoning” for the semantic
experts and the “createReasoningWithnonExpert” for the non-semantic experts.
In Table 11 the description of the service for creating a rule is provided. The service is
similar for the semantic and the non-semantic experts, since the latter is mainly used
for the Reasoning Tool to be described in D4.8. The experimenters have to define
some parameters for:

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 24

- Content: this is the main text describing the rule in a SPARQL query format.
- Description: this is the description of the rule.
- Sensor: this is an example URI of a sensor to be used for the rule.
- Latitude, Longtitude: example location details for the sensor.
- quantityKind: the modality of the sensor, i.e. temperature, humidity, power, etc.
- unitOfMeasurement: the measurement unit of the sensor, i.e. RH,

degreesCelsius, Watt, etc.
- reasoning: the json string describing the rule to be created.

An example of the Content parameter for defining a rule for a power sensor “if value >
0.1 then notify_high” is also shown in the table.

Title Create new Rule (createReasoning)
URL . /api/reasonings

Method POST
URL

Params
Required:
reasoning=[string]

This is the json string that provides the description of
the rule to be created. The json string should be in the
following form:
{
 "content": "string",
 "description": "string",
 "id": 0,
 "latitude": 0,
 "longitude": 0,
 "name": "string",
 "quantityKind": "string",
 "sensor": "string",
 "unitOfMeasurement": "string"
}
And content should be in the form of:

@prefix iot-lite:
<http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dul:
<http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix reasoning: <https://fiesta-iot.eu/reasoning#>
.(?observation rdf:type ssn:Observation),
(?observation ssn:observedProperty ?observedProperty),
(?observedProperty rdf:type m3-lite:Power),
(?observation ssn:observationResult ?sensorOutput),
(?sensorOutput ssn:hasValue ?obsValue),
(?obsValue dul:hasDataValue ?dataValue),
(?obsValue iot-lite:hasUnit ?unit),
(?unit rdf:type m3-lite:Watt),
greaterThan(?dataValue, “0.1”^^xsd:double) ->
(?observation reasoning:announce

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 25

“notify_high”^^xsd:string).

Success

Response
Example:
Code: 201 Created

Error
Response

Example:
Code: 400 Bad request
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found
Code: 500 Internal server error!

Sample
Call

curl -X POST --header 'Content-Type: application/json' --header
'Accept: application/json' -d '{ \
 "content": "%40prefix iot-lite:
<http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> . \
 %40prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> . \
 %40prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . \
 %40prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . \
 %40prefix xsd: <http://www.w3.org/2001/XMLSchema#> . \
 %40prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . \
 %40prefix dul:
<http://www.loa.istc.cnr.it/ontologies/DUL.owl#> . \
 %40prefix time: <http://www.w3.org/2006/time#> . \
 %40prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
\
 %40prefix reasoning: <https://fiesta-iot.eu/reasoning#>
.(?observation rdf:type ssn:Observation), \
 (?observation ssn:observedProperty ?observedProperty), \
 (?observedProperty rdf:type m3-lite:Power), \
 (?observation ssn:observationResult ?sensorOutput), \
 (?sensorOutput ssn:hasValue ?obsValue), \
 (?obsValue dul:hasDataValue ?dataValue), \
 (?obsValue iot-lite:hasUnit ?unit), \
 (?unit rdf:type m3-lite:Watt), \
 greaterThan(?dataValue, “0.1”^^xsd:double) -> (?observation
reasoning:announce “notify_high”^^xsd:string). \
 ", \
 "description": "string", \
 "id": 0, \
 "latitude": 0, \
 "longitude": 0, \
 "name": "string", \
 "quantityKind": "string", \
 "sensor": "string", \
 "unitOfMeasurement": "string" \
 }' 'https://platform.fiesta-iot.eu/reasoner-
engine/api/reasonings'

Notes -

Table 11: Rule creation for Semantic Expert API

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 26

3.3.1.4 Update Rule API

Experimenters may also need to change some parameters in the rules they have
created at some point. For this, the Reasoning Engine provides a service for updating
the rules by using the “updateReasoning” service using a PUT command and changing
the content of the rule, as seen in Table 12.

Title Update a Rule (updateReasoning)
URL . /api/reasonings

Method PUT
URL

Params
Required:
reasoning=[string]

This is the json string that provides the updated
description of the rule to be created. The json string
should be in the following form:
{
 "content": "string",
 "description": "string",
 "id": 0,
 "latitude": 0,
 "longitude": 0,
 "name": "string",
 "quantityKind": "string",
 "sensor": "string",
 "unitOfMeasurement": "string"
}
And content should be in the form of:

@prefix iot-lite:
<http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .
@prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dul:
<http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix reasoning: <https://fiesta-iot.eu/reasoning#>
.(?observation rdf:type ssn:Observation),
(?observation ssn:observedProperty ?observedProperty),
(?observedProperty rdf:type m3-lite:Power),
(?observation ssn:observationResult ?sensorOutput),
(?sensorOutput ssn:hasValue ?obsValue),
(?obsValue dul:hasDataValue ?dataValue),
(?obsValue iot-lite:hasUnit ?unit),
(?unit rdf:type m3-lite:Watt),
greaterThan(?dataValue, “0.1”^^xsd:double) ->
(?observation reasoning:announce
“notify_high”^^xsd:string).

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 27

Success
Response

Example:
Code: 200 OK

Error
Response

Example:
Code: 400 Bad request
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found
Code: 500 Internal server error!

Sample
Call

curl -X POST --header 'Content-Type: application/json' --header
'Accept: application/json' -d '{ \
 "content": "%40prefix iot-lite:
<http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> . \
 %40prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> . \
 %40prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . \
 %40prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . \
 %40prefix xsd: <http://www.w3.org/2001/XMLSchema#> . \
 %40prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . \
 %40prefix dul:
<http://www.loa.istc.cnr.it/ontologies/DUL.owl#> . \
 %40prefix time: <http://www.w3.org/2006/time#> . \
 %40prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
\
 %40prefix reasoning: <https://fiesta-iot.eu/reasoning#>
.(?observation rdf:type ssn:Observation), \
 (?observation ssn:observedProperty ?observedProperty), \
 (?observedProperty rdf:type m3-lite:Power), \
 (?observation ssn:observationResult ?sensorOutput), \
 (?sensorOutput ssn:hasValue ?obsValue), \
 (?obsValue dul:hasDataValue ?dataValue), \
 (?obsValue iot-lite:hasUnit ?unit), \
 (?unit rdf:type m3-lite:Watt), \
 greaterThan(?dataValue, “0.1”^^xsd:double) -> (?observation
reasoning:announce “notify_high”^^xsd:string). \
 ", \
 "description": "string", \
 "id": 0, \
 "latitude": 0, \
 "longitude": 0, \
 "name": "string", \
 "quantityKind": "string", \
 "sensor": "string", \
 "unitOfMeasurement": "string" \
 }' 'https://platform.fiesta-iot.eu/reasoner-
engine/api/reasonings'

Notes -
Table 12: Update rule API

3.3.1.5 Rule validation

When experimenters want to create or update some rules, to ensure that they are in
the correct format before they are executed, they must be validated, using the
“validateRule” service as seen in Table 13. This service takes two parameters for the
rule id and the sensor id and then provides the validation response that can be true

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 28

or false and a message string describing the result of the validation (i.e. what error
occurred).

Title Validate a Rule (validateRule)
URL . /api/rule/validate

Method POST
URL

Params
Required:
validateRequest=[string]

This is the json string that provides the information
for the rule to be validated. It should be in the
following form:

{
 "rule": "string",
 "sensorId": "string"
}

rule: the id of the rule to be validated
sensorId: the id of the sensor for which the rule will
be applied.

Success
Respons

e

Example:
Code: 200 OK

Error
Respons

e

Example:
Code: 400 Bad request
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found
Code: 500 Internal server error!

Sample
Call

curl -X POST --header 'Content-Type: application/json' --
header 'Accept: application/json' -d '{ \
 "rule": "10", \
 "sensorId": "https://platform-dev.fiesta-iot.eu/iot-
registry/api/resources/x1AlxibeGRXJDPUbYHcB9Wol22kDiTEwzjR1
t445JQfIPuv0YJivjsrb14DRkpj7mVw5_Ax4eVEsDr1PMu0AJxoj0uQFEZh
f743kKon7QVRc-DmsGDO9E6fxBK6Oc9pd" \
 }' 'https://platform.fiesta-iot.eu/reasoner-
engine/api/rule/validate'

Notes -

Table 13: Rule validation API

3.3.2 Register Rule Resource

The Register Rule Resource API provides several services that can be used by
experimenters for registering a rule that they have created previously so that they can
then execute it on their experiment. By registering a rule, the experimenter defines
specifically for which sensor (or set of sensors) the rule will execute. The Register Rule

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 29

Resource API provides services for retrieving the list of registered rules, for registering
a new rule, for updating a rule registration and for getting a specific registered rule. In
Figure 15 the list of services currently supported in the rule-resource API are
presented.

Figure 15: List all api in register rule resource

3.3.2.1 Get all registered rules API

The “getAllRegisterRules” service (presented in Table 14) provides the function for
experimenters to retrieve the full list of currently registered rules in a similar way like
the “getAllRules” service, using parameters such as page, size, and sort. However,
here, by accessing this service, the experimenter will only retrieve the list of rules he
has registered and not the rules registered by other experimenters. Since the list of
registered rules can be quite long in real deployments, the experimenter can select the
registered rules according to the following parameters below to limit the number of
rules, same as in the “getAllRules” service described in Section 3.3.1.1. The table also
shows an example of the request to get the list of registered rules starting from page 5
with a page size of “10” and sorted descending according to their id.

Title Get all registered Rules (getAllRegisterRules)
URL . /api/register-rule

Method GET
URL

Params
Optional:
page=[integer]

sets the starting page number for the registered rules to
be returned. For example, setting the page to “5”, the
reasoning engine will return the registered rules from
number size*5 until size*6-1, depending on the size
parameter below.

size=[integer]
sets the number of the registered rules per page to be
returned.

sort=[string]
sets the sorting criteria for the returned resultset, i.e.
ascending or descending.

example:
page=3
size=30
sort=asc

Success
Response

Example:
Code: 200 OK

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 30

Error
Response

Example:
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found

Sample Call curl -X GET --header 'Accept: application/json'
'https://platform.fiesta-iot.eu/reasoner-
engine/api/register-rules?page=5&size=10&sort=desc'

OR

https://platform.fiesta-iot.eu/reasoner-
engine/api/register-rules?page=5&size=10&sort=desc

Notes -

Table 14: Get all register rule API

Figure 16 shows the response of the previous request, which can be either a json array
containing the descriptions of the registered rules or a single json string.

Figure 16: Get All register rule sample response

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 31

3.3.2.2 Get register rule by id API

Experimenters can also query the reasoning engine to get a specific registered rule by
providing the rule registration identification number. This can be done by using the
“getRegisterRule” service of the register-rule-resource API, using as a parameter only
the registration ID, as seen in Table 15.

Title Get all registered Rules (getAllRegisterRules)
URL . /api/register-rule

Method GET
URL

Params
Optional:
page=[integer]

sets the starting page number for the registered rules to be
returned. For example, setting the page to “5”, the reasoning
engine will return the registered rules from number size*5
until size*6-1, depending on the size parameter below.

size=[integer]
sets the number of the registered rules per page to be
returned.

sort=[string]
sets the sorting criteria for the returned resultset, i.e.
ascending or descending.

example:
page=3
size=30
sort=asc

Success
Respons

e

Example:
Code: 200 OK

Error
Respons

e

Example:
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found

Sample
Call

curl -X GET --header 'Accept: application/json'
'https://platform.fiesta-iot.eu/reasoner-
engine/api/register-rules?page=5&size=10&sort=desc'

OR

https://platform.fiesta-iot.eu/reasoner-
engine/api/register-rules?page=5&size=10&sort=desc

Notes -

Table 15: Get rule by ID

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 32

3.3.2.3 Register rule API

For registering a rule, the experimenters should access the “createRegisterRule”
service (see Table 16), where they must define the json string of the rule registration.
In the json string, the experimenters must define the rule that they want to register and
provide details regarding the sensor they are checking with the rule.

Title Register new Rule (createReasoning)
URL . /api/register-rules

Method POST
URL

Params
Required:
registerRule=[string]

This is the json string that provides the description of
the rule to be registered. The json string should be in
the following form:
{
 "description": "string",
 "latitude": 0,
 "longitude": 0,
 "name": "string",
 "quantityKind": "string",
 "ruleId": 0,
 "sensor": "string",
 "unitOfMeasurement": "string"
}

With the following sub-parameters
- "ruleID": string

the id of the rule that was previously created and needs
to be registered.

- "Name": string
the name of the rule to be registered.

- "Description": string
this is the description of the rule registration.

- "Sensor": string
this is an example URI of a sensor to be used for the
rule.

- "Latitude", "Longtitude": example location details for
the sensor.

- "quantityKind": string
the modality of the sensor, i.e. temperature, humidity,
power, etc.

- "unitOfMeasurement": string
the measurement unit of the sensor, i.e. RH,
degreesCelsius, Watt, etc.

Success

Response
Example:
Code: 201 Created

Error
Response

Example:
Code: 400 Bad request
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found
Code: 500 Internal server error!

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 33

Sample
Call

curl -X POST --header 'Content-Type: application/json' --
header 'Accept: application/json' -d '{ \
 "description": "string", \
 "latitude": 0, \
 "longitude": 0, \
 "name": "string", \
 "quantityKind": "string", \
 "ruleId": 0, \
 "sensor": "string", \
 "unitOfMeasurement": "string" \
 }' 'https://platform.fiesta-iot.eu/reasoner-
engine/api/register-rules'

Notes -

Table 16: Register rule API

3.3.2.4 Update register rule API

Similar as with the rule creation, the Reasoning Engine includes also a service (see
Table 17) for updating the registered rules, via accessing the “updateRegisterRule”
service and defining the new content of the rule registration, i.e. the new sensor.

Title Update a registered Rule (updateRegisterRule)
URL . /api/rgister-rules

Method PUT
URL

Params
Required:
registerRule=[string]

This is the json string that provides the description of
the updated registered rule. The json string should be in
the following form:
{
 "description": "string",
 "latitude": 0,
 "longitude": 0,
 "name": "string",
 "quantityKind": "string",
 "ruleId": 0,
 "sensor": "string",
 "unitOfMeasurement": "string"
}

With the following sub-parameters
- "ruleID": string

the id of the rule that was previously created and needs
to be registered.

- "Name": string
the name of the rule to be registered.

- "Description": string
this is the description of the rule registration.

- "Sensor": string
this is an example URI of a sensor to be used for the
rule.

- "Latitude", "Longtitude": example location details for
the sensor.

- "quantityKind": string
the modality of the sensor, i.e. temperature, humidity,
power, etc.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 34

- "unitOfMeasurement": string
the measurement unit of the sensor, i.e. RH,
degreesCelsius, Watt, etc.

Success

Response
Example:
Code: 200 OK

Error
Response

Example:
Code: 400 Bad request
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found
Code: 500 Internal server error!

Sample
Call

curl -X PUT --header 'Content-Type: application/json' --
header 'Accept: application/json' -d '{ \
 "description": "string", \
 "id": 0, \
 "latitude": 0, \
 "longitude": 0, \
 "name": "string", \
 "quantityKind": "string", \
 "ruleId": 0, \
 "sensor": "string", \
 "unitOfMeasurement": "string" \
 }' 'https://platform.fiesta-iot.eu/reasoner-
engine/api/register-rules'

Notes -

Table 17: Update register rule API

3.3.3 Execution Resource

After creating and registering a rule, the next step is to execute the rule to see the
reasoning results. For this, the Reasoning Engine provides the Execution Resource
API with services for retrieving previous executions, creating a new execution and
retrieving a specific previous execution, as seen in Figure 17

Figure 17: Rule execution API

3.3.3.1 Get All executions

The “getAllExecutions” service (presented in Table 18) provides the function for
experimenters to retrieve the full list of previous executions of their registered rules in

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 35

a similar way like the “getAllRules” service, using parameters such as page, size, and
sort. However, here, by accessing this service, the experimenter will only retrieve the
list of their own previous executions and not the executions of other experimenters.
Since the list of previous executions can be quite long in real deployments, the
experimenter can select the previous executions to retrieve according to the following
parameters below in order to limit the number of results, same as in the “getAllRules”
service described in Section 3.3.1.1.

Title Get all previous executions of Rules (getAllExecutions)
URL . /api/executions

Method GET
URL

Params
Optional:
page=[integer]

sets the starting page number for the executions to be
returned. For example, setting the page to “5”, the reasoning
engine will return the previous executions from number size*5
until size*6-1, depending on the size parameter below.

size=[integer]
sets the number of the executions per page to be returned.

sort=[string]
sets the sorting criteria for the returned resultset, i.e.
ascending or descending.

example:
page=3
size=30
sort=asc

Success
Respons

e

Example:
Code: 200 OK

Error
Respons

e

Example:
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found

Sample
Call

curl -X GET --header 'Accept: application/json'
'https://platform.fiesta-iot.eu/reasoner-
engine/api/executions?page=5&size=10&sort=asc'

OR

https://platform.fiesta-iot.eu/reasoner-
engine/api/executions?page=5&size=10&sort=asc

Notes -

Table 18: Get All executions API

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 36

3.3.3.2 Get Specific Execution

Experimenters can also query the reasoning engine to get a specific previous
execution by providing the execution identification number. This can be done by using
the “getExecution” service of the execution-resource API, using as a parameter only
the execution ID, as seen in Table 19.

Title Get a specific Execution (getExecution)
URL /api/executions/{id}

Method GET
URL

Params
Required:
id=[integer]

The id of the specific execution to be returned

example:
id=13

Success
Respons

e

Example:
Code: 200 OK

Error
Respons

e

Example:
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found

Sample
Call

curl -X GET --header 'Accept: application/json'
'https://platform.fiesta-iot.eu/reasoner-
engine/api/executions/13'

OR

https://platform.fiesta-iot.eu/reasoner-
engine/api/executions/13

Notes -

Table 19: Get detail execution API

3.3.3.3 Execute Rule

The last action an experimenter must perform to execute a rule is to access the
“createExecution” service and create a new execution, by providing a textual
description in a json format of the execution, setting the required parameters (see
Table 20).
If the experimenter wants to get the reasoning results only on the latest value, then the
started/ended should be the same value and should be set to the current date/time.
Otherwise, setting the started and ended at different values, the rule will be executed
to the list of measurements within these times.
The response of an example execution can be seen in Figure 18, where the response
body includes the results of the execution, containing also the inference results.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 37

Title Create a new Execution (createExecution)
URL /api/executions

Method POST
URL

Params
Required:
execution=[string]

This is the json string that provides the description of
the new execution to be created. The json string should
be in the following form:

{
 "started": "2017-10-23T14:04:26.542Z"
 "ended": "2017-10-23T14:04:26.542Z",
 "executeType": 0,
 "registerRuleId": 0,
}

With the following sub-parameters
- "started": datestring

the starting date of the dataset that will be checked by
this rule.

- "ended": datestring
the ending date of the dataset that will be checked by
this rule.

- "executeType": integer
can be “1” if the experimenter wants to get results only
on the latest value or “2” if the experimenter wants the
results on a time series.

- "registerRuleId": integer
The id of the registered rule that will be executed.

Success

Response
Example:
Code: 201 Created

Error
Response

Example:
Code: 400 Bad request
Code: 401 Unauthorized
Code: 403 Forbidden
Code: 404 Not Found
Code: 500 Internal server error!

Sample
Call

curl -X POST --header 'Content-Type: application/json' --
header 'Accept: */*' -d '{ \
 "ended": "2017-10-23T14:04:26.542Z", \
 "executeType": 1, \
 "registerRuleId": 15, \
 "started": "2017-10-23T14:04:26.542Z" \
 }' 'https://platform.fiesta-iot.eu/reasoner-
engine/api/executions'

Notes -

Table 20: Execute rule API

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 38

Figure 18: Example Execute rule response

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 39

4 FIESTA-IOT MONITORING

4.1 Testbed Monitoring

To have a way to quickly overview the testbeds, their overall situation and the data that
is provided by them, a tool for monitoring the testbed data was implemented.
The Testbed Monitoring Tool shall continuously collect information from the testbeds
to monitor them or, being more precise, the data of the testbed that is stored in the
FIESTA-IoT platform. For this it collects data from different components but mainly
from the IoT-Registry. As the queries can be time consuming it is crucial to do these in
proper time intervals. The gathered data will be analysed in different ways. For the
basic overall status, the latest observations of every sensor are calculated and
visualized to get an overall overview. Other data are the trend of every sensor to
visualize them on the one hand but also to find any malfunctions of them.

Figure 19: The Testbed Monitoring Tool in the FIESTA-IoT platform
For this, the collected data will be stored in a database. But the data will be stored
without semantic information and only for a smaller time frame that is proper to
calculate trends. The stored data is used to provide the information explained before.
The information can be obtained mainly via a GUI that will visualize the data to give a
quick impression of the situation. Additionally, some information can be retrieved via
REST interface to get the collected or calculated data raw. Another possibility to get
informed is via a notification system. This allows the user to trigger notifications when
the state of one or more testbeds has changed, either from bad to good for
experimenters or the opposite for testbed providers.
The motivation to establish such a system is to give the users of the FIESTA-IoT
platform an overview of the health state of testbeds before starting an experiment. An
experiment can last a very long time. So, it would be worth to get an experience of the
data that will be consumed during this time. Also, the state of the gathered data during
the experiment can be checked after the experiment, if the data is relevant and there
were no gaps in the data stream. But also, the testbed owners can check that their
data is transferred to the platform successfully. Often testbed owners have their own
systems to check the health of their equipment, but here the data as they are provided
to other users of this data is checked.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 40

4.1.1 Provided Features

The Testbed Monitoring is integrated into the portal and can be found under the tools
section. It is integrated using an iframe and started as separate instance. It uses the
role management of the security solution to determine the role of the user to show
different views dependent of the role of the user, either registered user, experimenter,
testbed owner or FIESTA administrator.

Figure 20: The Testbed Monitoring Dashboard
The visual part of the Testbed Monitoring consists of a dashboard which lists all
testbeds with some basic information like the number of sensors having an observation
in the last 2 hours and the total number of registered sensors. The dashboard can be
seen in Figure 20. Additionally, all testbeds are shown in a map and their locations are
marked. When clicking on a testbed, a detailed list of all registered sensors is shown.
The sensors will be shown with the latest observation value and the time it was made.
Also, the type of the sensor is shown. If a sensor is clicked more detailed information
will be shown. A graph that shows the trend of the measured quantity over the time
and other information like the typical time interval is shown.
The testbed management view is only visible to FIESTA-IoT administrators. Here a
new registered testbed can be added for monitoring. This is needed when a testbed
was added to the platform and all sensors were registered and are working properly.
Also, testbeds can be removed again from monitoring.
The notification system can be used to select one or more testbeds and define a trigger
when a notification to a user shall be sent. This can help to postpone an experiment to
a situation when all involved testbeds are in a state which is acceptable for
experimenting. Also, testbed owners can define some triggers when they want to get
notified when there is a problem in their provided data.
The analysis of data is done in the background and uses the gathered data. It will
shape the data for visualizing and querying, but also tries to calculate and determine
some trends to detect a change in the delivery of testbed data. This will be done in a

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 41

long-term manner and can detect a frequency drift or changes in the accuracy of the
sensor.

4.1.2 Integration into the platform

The Testbed Monitoring is running as a Flask App2 and so is separated from the
components in the Wildfly container. In order integrate it into the portal with the help of
an iframe, an nginx proxy was setup to make it available under the same namespace
of the portal. The website is using a REST API and websockets to exchange data
between the backend and the website in the browser. The nginx instance will bypass
both communication ways. It also assures that the header information for the security
component is still available. By integrating the monitoring into the portal namespace,
the access by users is secured and users need to register to use the service.
The security component of the platform is used to get the role of the visiting user. This
is needed to adapt the view, as not every role can see everything.
The backend of the Testbed Monitoring queries the IoT-Registry locally on the
platform. It will use the local open port and accesses the service directly to query the
needed data. As the Testbed Monitoring is placed in the platform it can also query
other components like the EEE to get other necessary information or the DMS to
passively observe specific data.

4.1.3 Monitoring Tests and Collected Quantities

The Testbed Monitoring will query the IoT-Registry component of the platform mainly
for gathering data. It will collect the registered testbeds and the corresponding
resources that are the sensors that will provide the observations. The observations will
be collected and stored per sensor.
The process of gathering data is done as follows. First the IoT-Registry will be checked
for the registered testbeds. All testbeds will be added as not activated. This process
will be repeated every day to check for newly added or removed testbeds. The querying
of resources is also done daily. It will query the IoT-Registry for all sensors that have
a type, a quantity kind, a unit, and a location and are connected to an activated testbed.
Newly found resources will be added, removed ones will be deleted. The values of the
attributes of the sensor are converted into a leaner format, cutting away some of the
semantic notation. The gathering of observations will be done where every x hours the
observations of the last x hours will be retrieved. The observations will be converted,
prepared and stored per sensor. For every sensor only data of the last month is stored.
This data will be used to do the analytics and to calculate quality statements for every
sensor.
The stored data will be used for the visualization in the GUI and to feed the API. Also,
the analytics tasks use the gathered data and generate additional data for every sensor
and testbed that can be consumed by the GUI and the API.
For the GUI, the latest observation per sensor and the latest values for a specific
sensor can be directly taken from the prepared dataset, also the location per sensor is
already available. Calculated are the number of active sensors per testbed and the
combined location of all sensors of a testbed for example.

2 http://flask.pocoo.org/

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 42

For the GUI, the latest observation per sensor and the latest values for a specific
sensor can be directly taken from the prepared dataset, also the location per sensor is
already available. Calculated are the number of active sensors per testbed and the
combined location of all sensors of a testbed for example.

4.1.4 Components

The Components of the Testbed Monitoring can be categorized into three parts, the
background tasks, the GUI and the API. The background tasks will query the IoT-
Registry for data stored in the platform as well as preparing them for the usage in the
GUI. Also, the background tasks will do the analytics. The REST API will provide
collected and calculated data from the Monitoring that can be used by other
components and will be used by the GUI to add on-demand actions like showing
graphs or activating testbeds. The GUI is the main part that will be used by
Experimenters and Testbed Owners. It consists of four main parts, the dashboard, the
Detailed View, the Testbed Management and the Notification System.

4.1.4.1 Dashboard

The Dashboard is the main entry for the GUI. It can be used by any user and will show
the testbeds activated for monitoring in a table and their overall status.

In Figure 20 can be seen the dashboard. It consists of two parts, the table of listed
testbeds and a map where the location of the testbeds is marked. If a testbed is clicked,
a detailed view of the testbed is opened.

4.1.4.2 Detailed View

The Detailed View shows a list of the registered sensors that belong to the testbed.

Figure 21: The Testbed Monitoring Detailed View
All resources of the testbed are listed with their respective observed quantity kind, the
latest observation with time, value and unit, and the location of the sensor as seen in

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 43

Figure 21. When a sensor is clicked, a graph is shown that lists the latest values of this
sensor.

4.1.4.3 Testbed Management

The Testbed Management is available for FIESTA administrators only. Here testbeds
can be (de)activated for monitoring. As data will be collected only when the testbeds
are activated, this can be helpful to only collect data when the testbed and all resources
are registered and the workflow is established. This can be helpful as the collected
data will be used in analytics tasks and not proper working resources could lead to
false interpretation of the data.

4.1.4.4 Notification

The notification system can be used to get notified when the state of one or more
testbeds have changed their overall status. This can be used by experimenters when
a testbed which will be involved in an experiment is not performing well enough or
when resources which are used in an experiment are not sending data to the FIESTA-
IoT platform anymore or have been deregistered. Also, testbed owners could register
for notifications to get feedback for the process of transferring the sensed data into the
platform.

4.1.5 Separation to other components

The Testbed Monitoring will separate from similar components in the platform, the
FIESTA-IoT Analytics and the Platform Monitoring that is introduced in the next
section. The Analytics Service will work on the data and enhances it, while the Testbed
Monitoring tries to analyze the quality of data by comparing observations on a bigger
timescale. It tries to determine frequency drifts and to find sensors that are sensing
probably not correctly by analyzing sensors measuring the same phenomena in the
same region. The Platform Monitoring will monitor the components of the testbed itself.
It tries to determine components that behave different from normal operation.

4.2 FIESTA-IoT Platform Monitoring

FIESTA-IoT Platform Monitoring is performed in 2 ways:
- Monitoring Java Virtual Machine (JVM)
- Monitoring logs generated by various components.

In this deliverable, we will not be detailing how monitoring of the JVM is done as this
was already explained in Deliverable 4.7 [4]. However, in this deliverable, we focus on
how logs generated by various components can be monitored. The logs provide better
understanding of execution of component’s functionality and are important to detect
bugs in the component. These logs can be analysed for better understanding and bug
free FIESTA-IoT Platform. To perform analysis on the logs we use the Graylog3 tool.
The main idea behind Graylog is to have all the logs generated by different components
in a central repository, to analyse the logs and to discover and resolve issues faster. It
also allows system administrators to perform queries on the stored/collected logs.

3 https://www.graylog.org

https://www.graylog.org/

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 44

Graylog offers a web client where system administrators can monitor the performance
of the system based on the collected logs. To do so, Graylog offers wide range of
functionalities such as search on large-scale log based data, dashboard for quick
visualizations of metrics, triggers and alerts and collector that enables easy
configuration of the technology used to ship logs to Graylog. Beyond the above-
mentioned functionalities, Graylog offers secured access to the logs as logs can hold
critical information and REST APIs to access stored information. Further, Graylog
architecture follows support for cluster deployment4.

Figure 22: Graylog Architecture.
A successful deployment of Graylog stack requires mongoDB5, ElasticSearch6,
Logstash7 and Java8+. Its collector can be run on various platforms. Within FIESTA-
IoT ecosystem, Graylog is only available to platform administrators and its stack is
deployed as shown in the previous Figure 22.
With respect to the FIESTA-IoT platform that has multiple components running on
various technologies (Wildfly, OpenAM and MySQL), Graylog provide a way to monitor
the performance of FIESTA-IoT platform and easily browse through errors occurring if
any.

4.2.1 Install and Run

Below we provide in brief installation guide for all the components and requirements
related to successful deployment of Graylog stack. Once installed, the administrator
should first ssh to the Graylog VM using

ssh –L 9000:localhost:9000 <USERNAME>@<HOST_IP>

4 http://docs.graylog.org/en/latest/pages/architecture.html
5 https://www.mongodb.org
6 https://www.elastic.co/products/elasticsearch
7 https://www.elastic.co/products/logstash

http://docs.graylog.org/en/latest/pages/architecture.html
https://www.mongodb.org/
https://www.elastic.co/products/elasticsearch

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 45

Then only they can access the Graylog web using http://localhost:9000. This is done
for security purposes.

4.2.1.1 Installations on Graylog VM

The following Table 21 lists requirements for the smooth working of Graylog server and
the accompanying web.

Requirements Version
Java 8+

Table 21 Requirements
In case java is not installed use following commands:
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Once Java is installed MongoDB and ElasticSearch should be installed before
proceeding to install Graylog server and Graylog Web. Note that these installations
should be done on Graylog VM.

4.2.1.1.1 MongoDB

MongoDB can be installed using following command
sudo apt-get install mongodb-server

The above commands will install the latest version of mongoDB. Once installed its
configuration file is present in /etc folder under the name mongo.conf. Admins can
update the configuration depending on the needs. We in FIESTA-IoT use basic default
configuration. Again, if the configuration is changed it is advised to restart the server
using

sudo service mongodb restart

4.2.1.1.2 ElasticSearch

After successful installation of mongoDB, ElasticSearch can be installed using
wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo
apt-key add -
echo "deb https://artifacts.elastic.co/packages/5.x/apt stable main"
| sudo tee -a /etc/apt/sources.list.d/elastic-5.x.list
sudo apt-get update && sudo apt-get install elasticsearch
sudo su
cd /var/lib/elasticsearch/
mkdir data
mkdir logs
sudo chown elasticsearch:elasticsearch ../elasticsearch
cd elasticsearch/

http://localhost:9000/

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 46

sudo chown elasticsearch:elasticsearch *

The above commands will install the latest version (v5.5.1 at the time of writing of this
document) and will create elasticsearch.yml in the /etc/elasticsearch/ folder.
Administrators are advised to change the elasticsearch.yml with following entries:
cluster.name: graylog
node.name: graylogFiesta
path.data: /var/lib/elasticsearch/data
path.logs: /var/lib/elasticsearch/logs
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["<HOSTIP>:9200"]

This is the minimal configuration that is needed for the successful installation. Note
that here the <HOSTIP> is the IP address of the machine. We are further not going into
details of each entry as they are well explained in the ElasticSearch documentation.
Again, if the configuration is successfully updated, it is advised to restart the server
using

sudo service elasticsearch restart

This will restart the graylogFiesta ElasticSearch node.

4.2.1.1.3 Graylog Server + Web

After successful installation of mongoDB and ElasticSearch, Graylog server and its
web component can be installed using:
wget https://packages.graylog2.org/repo/packages/graylog-2.3-
repository_latest.deb
sudo dpkg -i graylog-2.3-repository_latest.deb
sudo apt-get update && sudo apt-get install graylog-server

This will install Graylog server version 2.3 and the Graylog web component. Once
installed, it is essential that Graylog now connect to mongoDB and ElasticSearch. The
configuration of this connection can be found in server.conf file located in
/etc/graylog/server/. The minimum configuration that one should perform is listed
below:
is_master = true
node_id_file = /etc/graylog/server/node-id
password_secret = <SECRET>
root_username = <USERNAME>
root_password_sha2 = <PASSWORD>
root_timezone = Europe/Paris
plugin_dir = /usr/share/graylog-server/plugin
rest_listen_uri = http://127.0.0.1:9000/api/
web_listen_uri = http://127.0.0.1:9000/
elasticsearch_hosts = http://<ESBINDINGHOST>:9200
rotation_strategy = count
elasticsearch_max_docs_per_index = 20000000

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 47

elasticsearch_max_number_of_indices = 20
retention_strategy = delete
elasticsearch_shards = 4
elasticsearch_replicas = 0
elasticsearch_index_prefix = graylog
allow_leading_wildcard_searches = false
allow_highlighting = false
elasticsearch_analyzer = standard
output_batch_size = 500
output_flush_interval = 1
output_fault_count_threshold = 5
output_fault_penalty_seconds = 30
processbuffer_processors = 5
outputbuffer_processors = 3
processor_wait_strategy = blocking
ring_size = 65536
inputbuffer_ring_size = 65536
inputbuffer_processors = 2
inputbuffer_wait_strategy = blocking
message_journal_enabled = true
message_journal_dir = /var/lib/graylog-server/journal
lb_recognition_period_seconds = 3
mongodb_uri = mongodb://localhost/graylog
mongodb_max_connections = 1000
mongodb_threads_allowed_to_block_multiplier = 5
content_packs_dir = /usr/share/graylog-server/contentpacks
content_packs_auto_load = grok-patterns.json
proxied_requests_thread_pool_size = 32

Once this is done, the administrator should restart the server using

sudo service graylog-server restart

This will restart the Graylog server that also hosts the web component. Note that here
<USENAME>, <PASSWORD> and a <SECRET> should be provided along with the
ElasticSearch binding IP <ESBINDINGHOST>. This <ESBINDINGHOST> should be
same as that ElasticSearch publishes.

4.2.1.2 Installations on FIESTA-IoT Platform machine

Logstash components should be installed on the VM where FIESTA-IoT platform is
running so that logs can be pushed to the Graylog VM. Following provides a detailed
guide towards installation and configuration of Logstash on the VM.
To install Logstash use following:
wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo
apt-key add -
echo "deb https://packages.elastic.co/elasticsearch/2.x/debian stable
main" | sudo tee -a /etc/apt/sources.list.d/elasticsearch-2.x.list

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 48

echo "deb https://packages.elastic.co/logstash/2.4/debian stable
main" | sudo tee -a /etc/apt/sources.list
sudo apt-get update && sudo apt-get install logstash

The above commands will create logstash directory under /opt/logstash and will
create a conf.d folder under /etc/logstash.
Once conf.d is created, we now create a configuration file in the
/etc/logstash/conf.d/. We should name this file as logstash.conf. This file
should contain:
input {
 file {
 type => "<TYPE1>"
 path => ["<PATH>/<LOGFILENAME1>.log"]
 codec => multiline {
 pattern => "^%{TIMESTAMP_ISO8601}|^%{MONTHDAY}-
%{MONTH}-%{YEAR}[T]%{TIME}?|^%{TIME}|^Hibernate?"
 negate => true
 what => "previous"
 }
 }
…
}
filter {
 if [type] == "<TYPE1>" {
 grok {
 match => ["message", "%{TIMESTAMP_ISO8601:timestamp}
%{LOGLEVEL:loglevel} %{GREEDYDATA:msg}"]
 }
 }

…

}

output {
 gelf {
 chunksize => 1420
 host => "<HOSTIP>"
 level => "INFO"
 port => 9200
 sender => "Platform"
 }
}

Note that here <TYPE1> should be a component name from where the logs are to be
fetched. <PATH>/<LOGFILENAME1> should be the absolute path of the log file.
Further, in case multiple components are producing logs, the administrator should
configure the “input” and “filter”. They should add another “file” block and another “if”

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 49

block in the configuration above. Once this is done, the administrator should restart the
Logstash service using

sudo service logstash restart

After a successful start, administrators can check the Logstash logs at
/var/log/logstash/. In order to check the syntactical errors in the configuration file,
administrators can use following command
opt/logstash/bin/logstash -f /etc/logstash/conf.d/logstash.conf –t

Note that the above will install Logstash version 2.4 this version is not latest version.

4.2.2 Graylog web Dashboard

Once all the dependencies are installed, as said before the admin should first ssh to
the Graylog VM using

ssh –L 9000:localhost:9000 <USERNAME>@<HOST_IP>

then only they can access the Graylog web using http://localhost:9000. Further, they
need <USERNAME> and <PASSWORD> (set in the server.conf file of Graylog) for
authentication.
After the successful login, the very first time user should further configure the Graylog
server. They need to go to http://localhost:9000/system/inputs and launch a new input.
They should select “Gelf UDP” as input type and then provide necessary information
making sure that the bind address input is the <ESBINDINGHOST> that usually is the
IP on which ElasticSearch is publishing and the port is 9200. Once this is done, the
user should select “Manage Extractor” and then select “add extractor” that are
custom grok patterns for the custom FIESTA-IoT component specific message
formats. A sample custom grok pattern that is
%{TIMESTAMP_ISO8601} \[%{DATA:thread}\] %{LOGLEVEL:LogLevel}
%{DATA:package} - %{GREEDYDATA:message}

Such grok patterns are used to extract information from the log message for analysis
purposes. After the configuration is done, administrators can see the parsed log
messages and write queries. A sample query looks like

type:EEE AND LogLevel:ERROR

Graylog besides querying provide quick visualizations that can be incorporated within
a dashboard. Figure 23 shows a sample dashboard with 2 visualizations, one for
LogLevel and all components that are publishing the logs. Nevertheless, more
visualizations are also possible (like histograms).

http://localhost:9000/
http://localhost:9000/system/inputs

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 50

Figure 23: Graylog Quick Access Dashboard

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 51

5 SUMMARY

This document has presented a set of tools, namely: FIESTA-IoT Analytics, FIESTA-
IoT Reasoning and FIESTA-IoT Monitoring as web services that an experimenter can
consume. This document has described the implementation, functionality and use
cases for such tools.
The FIESTA-IoT Reasoning component enables the inference of data. This was
achieved by allowing the experimenter to either create a set of rules or to select from
a set of semantically stored rules to process data. The functionality of the tool was
demonstrated with examples. This document provided a comprehensive description of
the tools functionality and use cases. The FIESTA-IoT Analytics tool allowed the
experimenter to select a set of pre-processing and machine learning algorithms to
analyze historical data sets. This document provided a detailed description of the
available algorithms and error messages when interacting with the component.
Furthermore, this document provided two use case examples that demonstrated the
FIESTA-IoT Analytics tool potential in analyzing data obtained from the IoT-Registry.
Finally, this document provided a detailed description of the implementation and
functionality of the FIESTA-IoT Monitoring tool. Namely, the tool captures information
relevant to testbed performance, where a portal provides a convenient dashboard for
a user to evaluate current testbed performance.
This document has addressed the core challenge of providing a set of tools for both
processing data as well as performance monitoring of IoT testbeds. For each tool,
future work will seek to improve functionality as follows. Namely, for the FIESTA-IoT
Analytics tool, we will attempt to increase the number of data analysis tools available
to the experimenter, along with a feedback mechanism where the experimenter can
evaluate the performance of specific algorithms. For the FIESTA-IoT Reasoning tool,
emphasis will be placed on developing complex event processing functionalities. While
for the FIESTA-IoT Monitoring tool, mechanisms for using performance data to provide
rapid and active feedback to the testbeds will be considered.

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 52

REFERENCES

[1] FIESTA-IoT, “Deliverable 3.5: Concept and Development for IoT Data
Analytics and IoT Stream and Service Management”, 2016

[2] FIESTA-IoT, “Deliverable 4.2: EaaS Model Specification and Implementation
V2”, 2017

[3] FIESTA-IoT, “Deliverable 4.8: Infrastructure for Submitting and Managing IoT
Experiments”, 2017.

[4] FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing IoT
Experiments V1”, 2016

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 53

APPENDIX I REASONING EXAMPLES

A1.1 Rule resource API

A1.1.1 Create rule

Title Create rule
Sample

Call
{
 "name":"Demo new rule 3333",
 "content":"@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-lite:
<http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .\n@prefix
geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
.\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .\n\n(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty ?observedProperty),\n(?observedProperty
rdf:type m3-lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput
ssn:hasValue ?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"25\"^^xsd:double) -> (?observation
reasoning:announce \"dangerous_notify\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty ?observedProperty),\n(?observedProperty
rdf:type m3-lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput
ssn:hasValue ?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"23\"^^xsd:double) -> (?observation
reasoning:announce \"lowpower_notify\"^^xsd:string).",
 "sensor":"https://platform.fiesta-iot.eu/iot-
registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I",
 "description":"demo new rule",
 "latitude":51.243343,
 "longitude":-0.5932438,
 "quantityKind":"http://purl.org/iot/vocab/m3-lite#Power",
 "unitOfMeasurement":"http://purl.org/iot/vocab/m3-lite#Watt"

}

Response
body

Response status code: 201

{

 "id": 27,

 "name": "Demo new rule 3333",

 "userId": "hungnguyen",

 "created": "2017-09-27T09:02:05.179+0000",

 "updated": null,

 "content": "@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-lite:
<http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .\n@prefix geo:
<http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
.\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .\n\n(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty ?observedProperty),\n(?observedProperty rdf:type
m3-lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit ?unit),\n(?unit
rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"25\"^^xsd:double) -> (?observation
reasoning:announce \"dangerous_notify\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty ?observedProperty),\n(?observedProperty rdf:type
m3-lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit ?unit),\n(?unit

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 54

rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"23\"^^xsd:double) -> (?observation reasoning:announce
\"lowpower_notify\"^^xsd:string).",

 "sensor": "https://platform.fiesta-iot.eu/iot-
registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I",

 "description": null,

 "latitude": 51.243343,

 "longitude": -0.5932438,

 "quantityKind": "http://purl.org/iot/vocab/m3-lite#Power",

 "unitOfMeasurement": "http://purl.org/iot/vocab/m3-lite#Watt",

 "ruleType": 1,

 "nonExpertOriginalRules": null

}
Response

body
Response status code: 400
{
 "result": false,
 "message": "Can not get sensor information given by sensor ID:https://platform.fiesta-iot.eu/iot-
registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I"
}

Response
body

Response status code: 500
Internal Server error

A1.1.2 Update rule

Title Update rule
Sample

Call
{

“id”:18,

 “name”:”Demo new rule 4444111”,

 “content”:”@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-lite:
<http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
.\n@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .\n\n(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \”25\”^^xsd:double) ->
(?observation reasoning:announce \”dangerous_notify\”^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \”21\”^^xsd:double) ->
(?observation reasoning:announce \”lowpower_notify\”^^xsd:string).”,

 “sensor”:”https://platform.fiesta-iot.eu/iot-
registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I”,

 “description”:”demo edit rule”,

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 55

 “latitude”:51.243343,

 “longitude”:-0.5932438,

 “quantityKind”:”http://purl.org/iot/vocab/m3-lite#Power”,

 “unitOfMeasurement”:”http://purl.org/iot/vocab/m3-lite#Watt”,

 “ruleType”:1

}

Response
body

Response status code: 200

{

 "id": 27,

 "name": "Demo new rule 3333",

 "userId": "hungnguyen",

 "created": "2017-09-27T09:02:05.179+0000",

 "updated": "2017-09-27T09:02:05.179+0000",

 "content": "@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-lite:
<http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
.\n@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .\n\n(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"25\"^^xsd:double) ->
(?observation reasoning:announce \"dangerous_notify\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"23\"^^xsd:double) ->
(?observation reasoning:announce \"lowpower_notify\"^^xsd:string).",

 "sensor": "https://platform.fiesta-iot.eu/iot-
registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I",

 "description": null,

 "latitude": 51.243343,

 "longitude": -0.5932438,

 "quantityKind": "http://purl.org/iot/vocab/m3-lite#Power",

 "unitOfMeasurement": "http://purl.org/iot/vocab/m3-lite#Watt",

 "ruleType": 1,

 "nonExpertOriginalRules": null

}

Response
body

Response status code: 400
 x-fiestareasonerengineapp-error → Can not update rule invalid rule id!

 x-fiestareasonerengineapp-error →You can not update this rule because you don not have
permission !

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 56

Response
body

Response status code: 500
Internal Server error

A1.1.3 Validate rule

Title Validate rule
Sample

Call
{

 "rule":"@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-lite:
<http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
.\n@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .\n\n(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"25\"^^xsd:double) ->
(?observation reasoning:announce \"dangerous_notify\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"23\"^^xsd:double) ->
(?observation reasoning:announce \"lowpower_notify\"^^xsd:string).",

 "sensorId":"https://platform.fiesta-iot.eu/iot-
registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I"

}

Response

body
Response status code: 200

{

 "result": true,

 "message": "Rule validation is valid!"

}

{

 "result": false,

 "message": "Can not get sensor information given by sensor ID:https://platform.fiesta-
iot.eu/iot-registry/api/resources/VsnDY_ipIeAhy2eCc5jxNRqGyBVsIwso2bO-
8KCr7GKnfKLgda8TdXItkjaADUHLb6VnxSxvR7MddDzbM9fR-
Crr9BuuRehd9QCZYPKVzsuaAvFxz6BhRc_PTWFEzu2I"

}

{

 "result": false,

 "message": "org.apache.jena.reasoner.rulesys.Rule$ParserException: Malformed rule\nAt
'@. '"

}

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 57

A1.2 Register rule resource

A1.2.1 Rule registration

Title Rule registration
Sample

Call
{

 "name":"Demo register new rule ABC",

 "description":"Demo register new rule ABC",

 "sensor":"https://platform.fiesta-iot.eu/iot-registry/api/resources/Ur7Q-
GLgxiLsfK4ZhXffEryue052DxDQzb8jxqKMPyLJZUiTr-
ZpAj1ZK_hi302o5gp8V6Fe1a2jEzg_STnJkUCQHp8f7qAg1DiohqUnfcll3289LvfcuRmXiDPfZROl
",

 "quantityKind":"http://purl.org/iot/vocab/m3-lite#Power",

 "unitOfMeasurement":"http://purl.org/iot/vocab/m3-lite#Watt",

 "latitude":51.243343,

 "longitude":-0.5932438,

 "ruleId":20

}

Respons
e body

Response status code: 201

{

 "id": 23,

 "name": "Demo register new rule ABC",

 "description": "Demo register new rule ABC",

 "ruleContent": "@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-lite:
<http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .\n@prefix geo:
<http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
.\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty ?observedProperty),\n(?observedProperty rdf:type
m3-lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit ?unit),\n(?unit
rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"20\"^^xsd:double) -> (?observation
reasoning:announce \"high_notification\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty ?observedProperty),\n(?observedProperty rdf:type
m3-lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit ?unit),\n(?unit
rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"20\"^^xsd:double) -> (?observation reasoning:announce
\"low_notification\"^^xsd:string).",

 "sensor": "https://platform.fiesta-iot.eu/iot-registry/api/resources/Ur7Q-
GLgxiLsfK4ZhXffEryue052DxDQzb8jxqKMPyLJZUiTr-
ZpAj1ZK_hi302o5gp8V6Fe1a2jEzg_STnJkUCQHp8f7qAg1DiohqUnfcll3289LvfcuRmXiDPfZROl",

 "latitude": 51.243343,

 "longitude": -0.5932438,

 "quantityKind": "http://purl.org/iot/vocab/m3-lite#Power",

 "unitOfMeasurement": "http://purl.org/iot/vocab/m3-lite#Watt",

 "userId": "hungnguyen",

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 58

 "created": "2017-09-27T09:09:45.405+0000",

 "updated": null,

 "ruleId": 20

}
Respons
e body

Response status code: 400
 x-fiestareasonerengineapp-error →Can not get sensor endpoint by given sensor ID, Please try
again sensor!

!

Respons
e body

Response status code: 500
Internal Server error

A1.2.2 Updating rule registration

Title Updating rule registration
Sample

Call
{

 "id":20,

 "name":"Demo register edit rule",

 "description":"Demo register edit rule",

 "sensor":"https://platform.fiesta-iot.eu/iot-
registry/api/resources/tRRAK2lA6S5GEca2qPQD6hWzOn-
kLp82OXHnXItm16LbPlSitapxvtgEcrxPmWuDG-vqcW8xUTwrYj13_jt-
t01DzPKZA6v1VYA_UVR77ihfGV9LONi8Tm0Ccv3rzBXR",

 "quantityKind":"http://purl.org/iot/vocab/m3-lite#Power",

 "unitOfMeasurement":"http://purl.org/iot/vocab/m3-lite#Watt",

 "latitude":51.243343,

 "longitude":-0.5932438,

 "ruleId":20

}

Response
body

Response status code: 200

{

 "id": 20,

 "name": "Demo register edit rule",

 "description": "Demo register edit rule",

 "ruleContent": "@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-
lite: <http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
.\n@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"20\"^^xsd:double) ->
(?observation reasoning:announce \"high_notification\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 59

?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"20\"^^xsd:double) ->
(?observation reasoning:announce \"low_notification\"^^xsd:string).",

 "sensor": "https://platform.fiesta-iot.eu/iot-
registry/api/resources/tRRAK2lA6S5GEca2qPQD6hWzOn-
kLp82OXHnXItm16LbPlSitapxvtgEcrxPmWuDG-vqcW8xUTwrYj13_jt-
t01DzPKZA6v1VYA_UVR77ihfGV9LONi8Tm0Ccv3rzBXR",

 "latitude": 51.243343,

 "longitude": -0.5932438,

 "quantityKind": "http://purl.org/iot/vocab/m3-lite#Power",

 "unitOfMeasurement": "http://purl.org/iot/vocab/m3-lite#Watt",

 "userId": "hungnguyen",

 "created": "2017-09-25T11:44:55.000+0000",

 "updated": "2017-09-27T09:18:32.929+0000",

 "ruleId": 20

}
Response

body
Response status code: 400

 x-fiestareasonerengineapp-error →Not found any register rule given by this ID!

Response

body
Response status code: 500
Internal Server error

A1.3 Execution resource

A1.3.1 Get specific execution

Title Get specific execution
Sample

Call
{

 "created": "2017-10-23T14:04:26.551Z",

 "ended": "2017-10-23T14:04:26.552Z",

 "fullData": "string",

 "id": 0,

 "infferedData": "string",

 "originalData": "string",

 "registerRule": {

 "created": "2017-10-23T14:04:26.552Z",

 "data": "string",

 "description": "string",

 "fullData": "string",

 "hashedSensor": "string",

 "id": 0,

 "inferredData": "string",

 "latitude": 0,

 "longitude": 0,

 "name": "string",

 "quantityKind": "string",

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 60

 "reasoning": {

 "content": "string",

 "created": "2017-10-23T14:04:26.552Z",

 "description": "string",

 "hashedSensor": "string",

 "id": 0,

 "latitude": 0,

 "longitude": 0,

 "name": "string",

 "quantityKind": "string",

 "ruleType": 0,

 "sensor": "string",

 "sensorEndp": "string",

 "sensorMeta": "string",

 "sensorSampleData": "string",

 "unitOfMeasurement": "string",

 "updated": "2017-10-23T14:04:26.552Z",

 "userId": "string"

 },

 "ruleContent": "string",

 "sensor": "string",

 "sensorEndp": "string",

 "sensorMeta": "string",

 "unitOfMeasurement": "string",

 "updated": "2017-10-23T14:04:26.552Z",

 "userId": "string"

 },

 "ruleContent": "string",

 "sensor": "string",

 "started": "2017-10-23T14:04:26.552Z",

 "status": true,

 "type": 0,

 "updated": "2017-10-23T14:04:26.552Z",

 "userId": "string"

}
Response

body
Response status code: 200

{

 "id": 10,

 "status": true,

 "created": "2017-09-25T12:14:22.000+0000",

 "updated": null,

 "started": "2017-09-25T12:14:20.000+0000",

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 61

 "ended": "2017-09-25T12:14:22.000+0000",

 "ruleContent": "@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix m3-
lite: <http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
.\n@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue ?obsValue),\n(?obsValue
dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit ?unit),\n(?unit rdf:type m3-
lite:Watt),\ngreaterThan(?dataValue, \"20\"^^xsd:double) -> (?observation reasoning:announce
\"high_notification\"^^xsd:string).(?observation rdf:type ssn:Observation),\n(?observation
ssn:observedProperty ?observedProperty),\n(?observedProperty rdf:type m3-
lite:Power),\n(?observation ssn:observationResult ?sensorOutput),\n(?sensorOutput
ssn:hasValue ?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-
lite:hasUnit ?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"20\"^^xsd:double) ->
(?observation reasoning:announce \"low_notification\"^^xsd:string).",

 "originalData":
"{\"vars\":[\"sensingDevice\",\"dataValue\",\"dateTime\",\"observation\",\"sensorOutput\",\"obsVal
ue\",\"instant\"],\"items\":[]}",

 "infferedData": "{ }\n",

 "fullData": "{\n \"@id\" : \"sics:loc#UNIVERSITY_OF_SURREY-unis-ics-desk-120\",\n
\"@type\" : \"geo:Point\",\n \"altRelative\" : \"2\",\n \"relativeLocation\" :
\"http://sws.geonames.org/6695971/\",\n \"geo:alt\" : 57.863815,\n \"geo:lat\" : 51.2433445,\n
\"geo:long\" : -0.5932438,\n \"@context\" : {\n \"long\" : {\n \"@id\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#long\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"lat\" : {\n \"@id\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#lat\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"alt\" : {\n \"@id\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#alt\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"relativeLocation\" : {\n \"@id\" :
\"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#relativeLocation\"\n },\n \"altRelative\" : {\n
\"@id\" : \"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#altRelative\"\n },\n \"onemtom\" :
\"http://www.onem2m.org/ontology/Base_Ontology/base_ontology#\",\n \"qudt\" :
\"http://data.qudt.org/qudt/owl/1.0.0/unit.owl#\",\n \"iot-lite\" :
\"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#\",\n \"qu\" : \"http://purl.org/NET/ssnx/qu/qu#\",\n
\"owl\" : \"http://www.w3.org/2002/07/owl#\",\n \"ns\" : \"http://creativecommons.org/ns#\",\n
\"xsd\" : \"http://www.w3.org/2001/XMLSchema#\",\n \"fiesta-iot\" :
\"http://purl.org/iot/ontology/fiesta-iot#\",\n \"rdfs\" : \"http://www.w3.org/2000/01/rdf-
schema#\",\n \"ssn\" : \"http://purl.oclc.org/NET/ssnx/ssn#\",\n \"geo\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#\",\n \"sics\" : \"http://smart-
ics.ee.surrey.ac.uk/fiesta-iot/\",\n \"terms\" : \"http://purl.org/dc/terms/\",\n \"rdf\" :
\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\",\n \"dcterms\" : \"http://purl.org/dc/terms/\",\n
\"dul\" : \"http://www.loa.istc.cnr.it/ontologies/DUL.owl#\",\n \"time\" :
\"http://www.w3.org/2006/time#\",\n \"mthreelite\" : \"http://purl.org/iot/vocab/m3-lite#\",\n
\"vann\" : \"http://purl.org/vocab/vann/\",\n \"dc\" : \"http://purl.org/dc/elements/1.1/\"\n }\n}\n",

 "userId": "hungnguyen",

 "sensor": "https://platform.fiesta-iot.eu/iot-
registry/api/resources/tRRAK2lA6S5GEca2qPQD6hWzOn-
kLp82OXHnXItm16LbPlSitapxvtgEcrxPmWuDG-vqcW8xUTwrYj13_jt-
t01DzPKZA6v1VYA_UVR77ihfGV9LONi8Tm0Ccv3rzBXR",

 "executeType": 2,

 "registerRuleId": 20

}
Response

body
Response status code: 404

 Not found

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 62

Response
body

Response status code: 500
Internal Server error

A1.3.3 Execute rule

Title Execute a rule
Sample

Call
Execute current time

{

"registerRuleId":20,
"started": "null",
"ended": "null",
"executeType":1

}

Execute within a specific time period (must be less than 5 days)

{

 "registerRuleId":20,

 "started":"2017-09-20T23:00:00.000Z",

 "ended":"2017-09-26T23:00:00.000Z",

 "executeType":2

}

Response

body
Response status code: 201

{

 "id": 17,

 "status": true,

 "created": "2017-09-27T09:34:28.009+0000",

 "updated": null,

 "started": "2017-09-27T09:34:24.910+0000",

 "ended": "2017-09-27T09:34:24.910+0000",

 "ruleContent": "@prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> .\n@prefix
m3-lite: <http://purl.org/iot/vocab/m3-lite#> .\n@prefix ssn:
<http://purl.oclc.org/NET/ssnx/ssn#> .\n@prefix geo:
<http://www.w3.org/2003/01/geo/wgs84_pos#> .\n@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .\n@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .\n@prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .\n@prefix time:
<http://www.w3.org/2006/time#> .\n@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .\n@prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\ngreaterThan(?dataValue, \"20\"^^xsd:double) ->
(?observation reasoning:announce \"high_notification\"^^xsd:string).(?observation rdf:type
ssn:Observation),\n(?observation ssn:observedProperty
?observedProperty),\n(?observedProperty rdf:type m3-lite:Power),\n(?observation
ssn:observationResult ?sensorOutput),\n(?sensorOutput ssn:hasValue
?obsValue),\n(?obsValue dul:hasDataValue ?dataValue),\n(?obsValue iot-lite:hasUnit
?unit),\n(?unit rdf:type m3-lite:Watt),\nlessThan(?dataValue, \"20\"^^xsd:double) ->
(?observation reasoning:announce \"low_notification\"^^xsd:string).",

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 63

 "originalData": "{\"@graph\":[{\"geo:alt\":57.863815,\"iot-
lite:relativeLocation\":\"http://sws.geonames.org/6695971/\",\"geo:lat\":51.2433445,\"@type\":\
"geo:Point\",\"geo:long\":-0.5932438,\"@id\":\"sics:loc#UNIVERSITY_OF_SURREY-unis-ics-
desk-105\",\"iot-lite:altRelative\":\"2\"},{\"observedBy\":\"sics:resource/sc-sics-sp-012-
power\",\"observationResult\":\"sics:sensorOutput#j0XVeZvdyW\",\"@type\":\"ssn:Observation
\",\"observationSamplingTime\":\"sics:timeInterval#UTC_OPR6ay621D\",\"observedProperty\"
:\"sics:observationProperty#Power\",\"location\":\"sics:loc#UNIVERSITY_OF_SURREY-unis-
ics-desk-
105\",\"@id\":\"sics:observation#j0XVeZvdyW\"},{\"@type\":\"mthreelite:Power\",\"@id\":\"sics:
observationProperty#Power\"},{\"hasUnit\":\"sics:unit#Watt\",\"@type\":\"ssn:ObservationValu
e\",\"dul:hasDataValue\":35.881526,\"@id\":\"sics:observationValue#j0XVeZvdyW\"},{\"@type\
":\"mthreelite:EnergyMeter\",\"@id\":\"sics:resource/sc-sics-sp-012-
power\"},{\"@type\":\"ssn:SensorOutput\",\"hasValue\":\"sics:observationValue#j0XVeZvdyW\"
,\"@id\":\"sics:sensorOutput#j0XVeZvdyW\"},{\"@type\":\"time:Instant\",\"@id\":\"sics:timeInter
val#UTC_OPR6ay621D\",\"inXSDDateTime\":\"2017-09-
27T09:34:00Z\"},{\"@type\":\"mthreelite:Watt\",\"@id\":\"sics:unit#Watt\"}],\"@context\":{\"qudt\
":\"http://data.qudt.org/qudt/owl/1.0.0/unit.owl#\",\"observedBy\":{\"@type\":\"@id\",\"@id\":\"htt
p://purl.oclc.org/NET/ssnx/ssn#observedBy\"},\"iot-
lite\":\"http://purl.oclc.org/NET/UNIS/fiware/iot-
lite#\",\"owl\":\"http://www.w3.org/2002/07/owl#\",\"ns\":\"http://creativecommons.org/ns#\",\"xs
d\":\"http://www.w3.org/2001/XMLSchema#\",\"observedProperty\":{\"@type\":\"@id\",\"@id\":\
"http://purl.oclc.org/NET/ssnx/ssn#observedProperty\"},\"rdfs\":\"http://www.w3.org/2000/01/rd
f-
schema#\",\"long\":{\"@type\":\"http://www.w3.org/2001/XMLSchema#double\",\"@id\":\"http://
www.w3.org/2003/01/geo/wgs84_pos#long\"},\"ssn\":\"http://purl.oclc.org/NET/ssnx/ssn#\",\"g
eo\":\"http://www.w3.org/2003/01/geo/wgs84_pos#\",\"terms\":\"http://purl.org/dc/terms/\",\"obs
ervationSamplingTime\":{\"@type\":\"@id\",\"@id\":\"http://purl.oclc.org/NET/ssnx/ssn#observ
ationSamplingTime\"},\"dcterms\":\"http://purl.org/dc/terms/\",\"mthreelite\":\"http://purl.org/iot/v
ocab/m3-
lite#\",\"vann\":\"http://purl.org/vocab/vann/\",\"lat\":{\"@type\":\"http://www.w3.org/2001/XMLS
chema#double\",\"@id\":\"http://www.w3.org/2003/01/geo/wgs84_pos#lat\"},\"onemtom\":\"htt
p://www.onem2m.org/ontology/Base_Ontology/base_ontology#\",\"altRelative\":{\"@type\":\"ht
tp://www.w3.org/2001/XMLSchema#string\",\"@id\":\"http://purl.oclc.org/NET/UNIS/fiware/iot-
lite#altRelative\"},\"observationResult\":{\"@type\":\"@id\",\"@id\":\"http://purl.oclc.org/NET/ss
nx/ssn#observationResult\"},\"qu\":\"http://purl.org/NET/ssnx/qu/qu#\",\"alt\":{\"@type\":\"http://
www.w3.org/2001/XMLSchema#double\",\"@id\":\"http://www.w3.org/2003/01/geo/wgs84_po
s#alt\"},\"fiesta-iot\":\"http://purl.org/iot/ontology/fiesta-
iot#\",\"hasValue\":{\"@type\":\"@id\",\"@id\":\"http://purl.oclc.org/NET/ssnx/ssn#hasValue\"},\"
relativeLocation\":{\"@type\":\"http://www.w3.org/2001/XMLSchema#string\",\"@id\":\"http://pu
rl.oclc.org/NET/UNIS/fiware/iot-lite#relativeLocation\"},\"sics\":\"http://smart-
ics.ee.surrey.ac.uk/fiesta-
iot/\",\"hasUnit\":{\"@type\":\"@id\",\"@id\":\"http://purl.oclc.org/NET/UNIS/fiware/iot-
lite#hasUnit\"},\"rdf\":\"http://www.w3.org/1999/02/22-rdf-syntax-
ns#\",\"location\":{\"@type\":\"@id\",\"@id\":\"http://www.w3.org/2003/01/geo/wgs84_pos#loca
tion\"},\"dul\":\"http://www.loa.istc.cnr.it/ontologies/DUL.owl#\",\"time\":\"http://www.w3.org/200
6/time#\",\"inXSDDateTime\":{\"@type\":\"http://www.w3.org/2001/XMLSchema#dateTime\",\"
@id\":\"http://www.w3.org/2006/time#inXSDDateTime\"},\"hasDataValue\":{\"@type\":\"http://
www.w3.org/2001/XMLSchema#double\",\"@id\":\"http://www.loa.istc.cnr.it/ontologies/DUL.o
wl#hasDataValue\"},\"dc\":\"http://purl.org/dc/elements/1.1/\"}}",

 "infferedData": "{\n \"@id\" : \"http://smart-ics.ee.surrey.ac.uk/fiesta-
iot/observation#j0XVeZvdyW\",\n \"announce\" : \"high_notification\",\n \"@context\" : {\n
\"announce\" : {\n \"@id\" : \"https://fiesta-iot.eu/reasoning#announce\"\n }\n }\n}\n",

 "fullData": "{\n \"@graph\" : [{\n \"@id\" : \"sics:loc#UNIVERSITY_OF_SURREY-unis-ics-
desk-105\",\n \"@type\" : \"geo:Point\",\n \"altRelative\" : \"2\",\n \"relativeLocation\" :
\"http://sws.geonames.org/6695971/\",\n \"geo:alt\" : 57.863815,\n \"geo:lat\" :
51.2433445,\n \"geo:long\" : -0.5932438\n }, {\n \"@id\" :
\"sics:observation#j0XVeZvdyW\",\n \"@type\" : \"ssn:Observation\",\n \"observationResult\"
: \"sics:sensorOutput#j0XVeZvdyW\",\n \"observationSamplingTime\" :
\"sics:timeInterval#UTC_OPR6ay621D\",\n \"observedBy\" : \"sics:resource/sc-sics-sp-012-
power\",\n \"observedProperty\" : \"sics:observationProperty#Power\",\n \"location\" :
\"sics:loc#UNIVERSITY_OF_SURREY-unis-ics-desk-105\",\n \"announce\" :
\"high_notification\"\n }, {\n \"@id\" : \"sics:observationProperty#Power\",\n \"@type\" :
\"mthreelite:Power\"\n }, {\n \"@id\" : \"sics:observationValue#j0XVeZvdyW\",\n \"@type\" :
\"ssn:ObservationValue\",\n \"hasUnit\" : \"sics:unit#Watt\",\n \"dul:hasDataValue\" :
35.881526\n }, {\n \"@id\" : \"sics:resource/sc-sics-sp-012-power\",\n \"@type\" :

FIESTA-IoT Deliverable D3.6 - Concept and Development for IoT Data Analytics and IoT
Stream and Service Management

Copyright 2017 FIESTA-IoT Consortium 64

\"mthreelite:EnergyMeter\"\n }, {\n \"@id\" : \"sics:sensorOutput#j0XVeZvdyW\",\n \"@type\"
: \"ssn:SensorOutput\",\n \"hasValue\" : \"sics:observationValue#j0XVeZvdyW\"\n }, {\n
\"@id\" : \"sics:timeInterval#UTC_OPR6ay621D\",\n \"@type\" : \"time:Instant\",\n
\"inXSDDateTime\" : \"2017-09-27T09:34:00Z\"\n }, {\n \"@id\" : \"sics:unit#Watt\",\n
\"@type\" : \"mthreelite:Watt\"\n }],\n \"@context\" : {\n \"announce\" : {\n \"@id\" :
\"https://fiesta-iot.eu/reasoning#announce\"\n },\n \"long\" : {\n \"@id\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#long\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"lat\" : {\n \"@id\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#lat\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"alt\" : {\n \"@id\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#alt\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"relativeLocation\" : {\n \"@id\" :
\"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#relativeLocation\"\n },\n \"altRelative\" : {\n
\"@id\" : \"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#altRelative\"\n },\n \"location\" : {\n
\"@id\" : \"http://www.w3.org/2003/01/geo/wgs84_pos#location\",\n \"@type\" : \"@id\"\n
},\n \"observedProperty\" : {\n \"@id\" :
\"http://purl.oclc.org/NET/ssnx/ssn#observedProperty\",\n \"@type\" : \"@id\"\n },\n
\"observedBy\" : {\n \"@id\" : \"http://purl.oclc.org/NET/ssnx/ssn#observedBy\",\n
\"@type\" : \"@id\"\n },\n \"observationSamplingTime\" : {\n \"@id\" :
\"http://purl.oclc.org/NET/ssnx/ssn#observationSamplingTime\",\n \"@type\" : \"@id\"\n },\n
\"observationResult\" : {\n \"@id\" :
\"http://purl.oclc.org/NET/ssnx/ssn#observationResult\",\n \"@type\" : \"@id\"\n },\n
\"hasDataValue\" : {\n \"@id\" :
\"http://www.loa.istc.cnr.it/ontologies/DUL.owl#hasDataValue\",\n \"@type\" :
\"http://www.w3.org/2001/XMLSchema#double\"\n },\n \"hasUnit\" : {\n \"@id\" :
\"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#hasUnit\",\n \"@type\" : \"@id\"\n },\n
\"inXSDDateTime\" : {\n \"@id\" : \"http://www.w3.org/2006/time#inXSDDateTime\",\n
\"@type\" : \"http://www.w3.org/2001/XMLSchema#dateTime\"\n },\n \"hasValue\" : {\n
\"@id\" : \"http://purl.oclc.org/NET/ssnx/ssn#hasValue\",\n \"@type\" : \"@id\"\n },\n
\"onemtom\" : \"http://www.onem2m.org/ontology/Base_Ontology/base_ontology#\",\n
\"qudt\" : \"http://data.qudt.org/qudt/owl/1.0.0/unit.owl#\",\n \"iot-lite\" :
\"http://purl.oclc.org/NET/UNIS/fiware/iot-lite#\",\n \"qu\" :
\"http://purl.org/NET/ssnx/qu/qu#\",\n \"owl\" : \"http://www.w3.org/2002/07/owl#\",\n \"ns\" :
\"http://creativecommons.org/ns#\",\n \"xsd\" : \"http://www.w3.org/2001/XMLSchema#\",\n
\"fiesta-iot\" : \"http://purl.org/iot/ontology/fiesta-iot#\",\n \"rdfs\" :
\"http://www.w3.org/2000/01/rdf-schema#\",\n \"ssn\" :
\"http://purl.oclc.org/NET/ssnx/ssn#\",\n \"geo\" :
\"http://www.w3.org/2003/01/geo/wgs84_pos#\",\n \"sics\" : \"http://smart-
ics.ee.surrey.ac.uk/fiesta-iot/\",\n \"terms\" : \"http://purl.org/dc/terms/\",\n \"rdf\" :
\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\",\n \"dcterms\" : \"http://purl.org/dc/terms/\",\n
\"dul\" : \"http://www.loa.istc.cnr.it/ontologies/DUL.owl#\",\n \"time\" :
\"http://www.w3.org/2006/time#\",\n \"mthreelite\" : \"http://purl.org/iot/vocab/m3-lite#\",\n
\"vann\" : \"http://purl.org/vocab/vann/\",\n \"dc\" : \"http://purl.org/dc/elements/1.1/\"\n }\n}\n",

 "userId": "hungnguyen",

 "sensor": "https://platform.fiesta-iot.eu/iot-
registry/api/resources/1NiQTwHfIgfqKODCcZpmYgtwvYqlZQ0Ycj2wnEoFkfgS-
xeviqhbKlcHUQQpttfkTglWwwFwjU6CVXwT3Fh5ONrUE27If0dzZwm1nFeSYdEcRB08HPWy
5MMfSBbN6r3y",

 "executeType": 1,

 "registerRuleId": 24

}
Response

body
Response status code: 500
Internal Server error

	//
	HORIZONS 2020 PROGRAMME
	Research and Innovation Action – FIRE Initiative
	H2020–ICT–2014–1
	Call Identifier:
	643943
	Project Number:
	FIESTA-IoT
	Project Acronym:
	Federated Interoperable Semantic IoT/cloud Testbeds and Applications
	Project Title:
	D3.6 Concept and Development for IoT Data Analytics and IoT Stream and Service Management
	FIESTAIoT-WP3-D3.6-ConceptDevelopmentDataAnalyticsServiceManagement-V04.doc
	Document Id:
	FIESTAIoT-WP3-D3.6-CConceptDevelopmentDataAnalyticsServiceManagement-V04.doc
	File Name:
	Deliverable 3.6
	Document reference:
	V04
	Version:
	Alireza Ahrabian, Tarek Elsaleh, Francois Carrez
	Editor:
	UNIS
	Organisation:
	26 / 10 / 2017
	Date:
	Report, Other
	Document type:
	PU
	Dissemination level:
	Copyright (2017 National University of Ireland - NUIG / Coordinator (Ireland), University of Southampton IT Innovation - ITINNOV (United Kingdom), Institut National de Recherche en Informatique & Automatique - INRIA, (France), University of Surrey - UNIS (United Kingdom), Unparallel Innovation, Lda - UNINNOVA (Portugal), Easy Global Market - EGM (France), NEC Europe Ltd. NEC (United Kingdom), University of Cantabria UNICAN (Spain), Association Plate-forme Telecom - Com4innov (France), Research and Education Laboratory in Information Technologies - Athens Information Technology - AIT (Greece), Sociedad para el desarrollo de Cantabria – SODERCAN (Spain), Ayuntamiento de Santander – SDR (Spain), Korea Electronics Technology Institute KETI, (Korea).
	DOCUMENT HISTORY
	Comments
	Date
	Organisation(s)
	Author(s)
	Rev.
	Initial Document Template
	08/05/2017
	UNIS
	Alireza Ahrabian
	V01
	Updated content for FIESTA-IoT Analytics. Updated table of contents for FIESTA-IoT Reasoning and Monitoring
	25/06/2017
	UNIS
	Alireza Ahrabian
	V01
	Platform Monitoring
	22/08/2017
	INRIA
	Rachit Agarwal
	V01
	Hung Nguyen/ Elias Tragos
	Reasoning
	17/09/2017
	NUIG
	V01
	Testbed Monitoring and content merging
	Ronald Steinke/ Alireza Ahrabian
	27/09/2017
	FOKUS/UNIS
	V02
	Document Ready for Review
	06/10/2017
	UNIS
	Alireza Ahrabian
	V03
	Alireza Ahrabian/ Hung Nguyen/ Elias Tragos/ Rachit Agarwal/ Ronald Steinke
	QR’s: Paul Grace (ITINNOV) and Tiago Teixeira (UNPARALLEL)
	UNIS/NUIG/
	23/10/2017
	V03
	TR’s: Nikos Kefalakis (AIT) and Jorge Lanza Calderón (UNICAN)
	INRIA/FOKUS
	Final version after reviewer comments
	Alireza Ahrabian, Tarek Elsaleh
	26/10/2017
	UNIS
	V04
	TABLE OF CONTENTS
	1.1 Executive Summary 5
	2 FIESTA-IOT ANALYTICS 6
	2.1 Introduction 6
	2.1 Component API Description 7
	2.2 Methods and Parameters 7
	2.2.1 Set of Methods 7
	2.2.2 Methods and Parameters Description 9
	2.2.3 Error Messages 11
	2.3 FIESTA-IoT Analytics Use Case 12
	2.3.1 Use Case Example 1 – Correlation Analysis 12
	2.3.2 Use Case Example 2 – Clustering 14
	3 FIESTA-IOT REASONING 16
	3.1 Introduction 16
	3.2 Architecture 16
	3.3 Reasoning API 18
	3.3.1 Rule Resource 19
	3.3.1.1 Get all rules API 20
	3.3.1.2 Get Rule by ID API 21
	3.3.1.3 Create rule 23
	3.3.1.4 Update Rule API 26
	3.3.1.5 Rule validation 27
	3.3.2 Register Rule Resource 28
	3.3.2.1 Get all registered rules API 29
	3.3.2.2 Get register rule by id API 31
	3.3.2.3 Register rule API 32
	3.3.2.4 Update register rule API 33
	3.3.3 Execution Resource 34
	3.3.3.1 Get All executions 34
	3.3.3.2 Get Specific Execution 36
	3.3.3.3 Execute Rule 36
	4 FIESTA-IOT MONITORING 39
	4.1 Testbed Monitoring 39
	4.1.1 Provided Features 40
	4.1.2 Integration into the platform 41
	4.1.3 Monitoring Tests and Collected Quantities 41
	4.1.4 Components 42
	4.1.4.1 Dashboard 42
	4.1.4.2 Detailed View 42
	4.1.4.3 Testbed Management 43
	4.1.4.4 Notification 43
	4.1.5 Separation to other components 43
	4.2 FIESTA-IoT Platform Monitoring 43
	4.2.1 Install and Run 44
	4.2.1.1 Installations on Graylog VM 45
	4.2.1.2 Installations on FIESTA-IoT Platform machine 47
	4.2.2 Graylog web Dashboard 49
	5 SUMMARY 51
	REFERENCES 52
	APPENDIX I REASONING EXAMPLES 53
	A1.1 Rule resource API 53
	A1.1.1 Create rule 53
	A1.1.2 Update rule 54
	A1.1.3 Validate rule 56
	1 INTRODUCTION 5
	A1.2 Register rule resource 57
	A1.2.1 Rule registration 57
	A1.2.2 Updating rule registration 58
	A1.3 Execution resource 59
	A1.3.1 Get specific execution 59
	A1.3.3 Execute rule 62
	LIST OF FIGURES
	Figure 1: FIESTA-IoT Analytics Service Interaction 6
	Figure 1: HTTP Request JSON Object 7
	Figure 3: SPARQL query body for obtaining power sensor data and time stamps 13
	Figure 4: POST request body for FIESTA-IoT Analytics tool (SPARQL sentence shown in Figure 3) 13
	Figure 5: Correlation between sensors 14
	Figure 6: POST request for filtering and clustering 14
	Figure 7: Data clustering 15
	Figure 8: FIESTA-IoT Reasoning Architecture 17
	Figure 9: Example sequence diagram for creating a new reasoning rule 17
	Figure 10: Example sequence diagram for creating and running a new rule execution. 18
	Figure 11: Reasoning API 19
	Figure 12: Rule resource API listing 20
	Figure 13: Get All rule example response 21
	Figure 14: Get rule by ID sample response 23
	Figure 15: List all api in register rule resource 29
	Figure 16: Get All register rule sample response 30
	Figure 17: Rule execution API 34
	Figure 18: Example Execute rule response 38
	Figure 19: The Testbed Monitoring Tool in the FIESTA-IoT platform 39
	Figure 20: The Testbed Monitoring Dashboard 40
	Figure 21: The Testbed Monitoring Detailed View 42
	Figure 22: Graylog Architecture. 44
	Figure 23: Graylog Quick Access Dashboard 50
	LIST OF TABLES
	Table 1: Pre-Processing Techniques List 7
	Table 2: Unsupervised Learning Techniques List 8
	Table 3: Supervised Learning Techniques List 8
	Table 4: Other Methods List 9
	Table 5: List of methods and parameters for pre-processing techniques. 9
	Table 6: List of methods and parameters for unsupervised learning techniques. 10
	Table 7: List of methods and parameters for supervised learning techniques. 10
	Table 8: List of error messages and corresponding descriptions. 12
	Table 9: Get All rules API 21
	Table 10: Get rule by ID API 22
	Table 11: Rule creation for Semantic Expert API 25
	Table 12: Update rule API 27
	Table 13: Rule validation API 28
	Table 14: Get all register rule API 30
	Table 15: Get rule by ID 31
	Table 16: Register rule API 33
	Table 17: Update register rule API 34
	Table 18: Get All executions API 35
	Table 19: Get detail execution API 36
	Table 20: Execute rule API 37
	Table 21 Requirements 45
	TERMS AND ACRONYMS
	Application Programming Interface
	API
	Continuous Query Evaluation over Linked Streams
	CQELS
	Graphical User Interface
	GUI
	Internet Connected Object
	ICO
	Internet of Things
	IoT
	Framework to build semantic web applications
	Jena
	Database to store semantic information called triple
	Jena TDB
	Knowledge Acquisition Toolkit
	KAT
	A tool to link sensor data
	LD4Sensors
	Linked Edit Rules
	LER
	Linked Open Data
	LOD
	Linked Open Vocabularies
	LOV
	Linked Open Vocabularies for Internet of Things (LOV4IoT)
	LOV4IoT
	Linked Sensor Middleware
	LSM
	Machine to Machine Measurement framework
	M3
	Stream Annotation Ontology
	SAO
	Sensor-based Linked Open Rules
	S-LOR
	Semantic Data Repository
	SDR
	Semantic Sensor Networks
	SSN
	1 Introduction
	1.1 Executive Summary

	FIESTA-IoT facilitates the capture, storage and processing of data generated from a variety of testbeds in an interoperable manner. This document provides a description of the tools developed for processing data that is captured and stored by the FIESTA-IoT platform. Namely, the FIESTA-IoT Analytics, FIESTA-IoT Reasoning and FIESTA-IoT Monitoring tools.
	The FIESTA-IoT Analytics tool uses the concept of historical data analysis as a web service, where the experimenter can select a variety of methods for the processing of data. This deliverable provides an explanation of the function for each technique along with a description of the tools parameters and error responses when making a request. FIESTA-IoT Reasoning provides a reasoning engine web service for obtaining actionable knowledge from streamed data sets. This is achieved by using a set of rules (i.e. if-then conditions) that are applied to the data. The tool provides the means for the experimenter to create rules along with rule execution and storage. This document provides a detailed explanation of the FIESTA-IoT Reasoning tool, where examples of the tools use are also provided.
	Finally, this document provides a detailed description of the FIESTA-IoT monitoring tool. That is, the tool continuously collects information regarding testbed performance. The tool provides a means of visually evaluating testbed status and performance. Furthermore, this tool provides a convenient method of assessing malfunctions at the sensor level for a given testbed.
	2 FIESTA-IOT Analytics
	2.1 Introduction
	2.1 Component API Description
	2.2 Methods and Parameters
	2.2.1 Set of Methods
	2.2.2 Methods and Parameters Description
	2.2.3 Error Messages

	2.3 FIESTA-IoT Analytics Use Case
	2.3.1 Use Case Example 1 – Correlation Analysis
	2.3.2 Use Case Example 2 – Clustering

	In this section, we provide an explanation of the proposed tool in relation to the FIESTA-IoT platform.
	This project proposes to provide data analysis tools as a web service, to enable a wider range of data consumer access to advanced data analysis tools. These algorithms are made available as HTTP rest methods; a data consumer can then run these algorithms on their data set by making the appropriate REST call as described in this section. A description of the data analysis tools that will be provided along with the components interaction within the FIESTA-IoT architecture was presented in deliverable D3.5 [1]. It was identified that the following data analysis tools would be provided, namely: 1) pre-processing methods, 2) supervised learning, 3) unsupervised learning algorithms and finally 4) other techniques and methods (examples of techniques belonging to this class are spectral and dependence estimation methods). In the subsequent sections we provide an overview of the API for interacting with the component. Furthermore, a detailed description of methods and parameters that are provided by the proposed tool, along with error messages that may arise is provided. Finally, use case examples of the proposed tool are also presented.
	/
	Figure 1: FIESTA-IoT Analytics Service Interaction
	In order to invoke the proposed FIESTA-IoT Analytics service, a HTTP POST request must be made. The body of the request contains a JSON object that is shown in Figure 1. Namely, the list of methods and the corresponding parameters are provided along, with the SPARQL query and endpoint where the data can be obtained. A detailed description of the methods and the corresponding parameters are provided in the subsequent sections. It should be noted that a detailed explanation of the components interaction with the FIESTA-IoT platform can be found in Section 7.2 of deliverable 4.2 [2].
	This section provides a description of the functionality of the complete set of methods provided in the FIESTA-IoT Analytics tool, as well as the input parameters required for each method. Furthermore, a complete list of error messages is also presented.
	The corresponding list of methods and the corresponding functionality is presented below:
	1. Pre-processing
	Pre-processing techniques enable the data consumer to remove corrupted and noisy data points from the original raw time series data. The FIESTA-IoT Analytics tool provides two such methods, namely, digital filtering and outlier removal (please refer to Table 1 for list and description of the relevant methods).
	Table 1: Pre-Processing Techniques List
	2. Unsupervised Learning
	This tool provides exploratory data analysis tools, namely unsupervised machine learning techniques to enable the experimenter to discover patterns of interest in the data set being analysed (please refer to Table 2 for list and description of the relevant methods).
	Table 2: Unsupervised Learning Techniques List
	3. Supervised Learning
	Many data analysis problems require the experimenter to either determine a relationship between a set of input and output data points, or to obtain an estimate of the output data points given the input data points. To this end, both linear and nonlinear supervised learning techniques are provided (please refer to Table 3 for list and description of the relevant methods).
	Table 3: Supervised Learning Techniques List
	4. Other Methods
	Data analysis tools that are not applicable to the above categories, are listed in the other methods field. This tool provides spectral analysis and data dependency estimation tools for the experimenter. Spectral estimation tools are particularly useful for designing digital filters for removing noise, while data dependency estimation tools are particularly useful for linear regression.
	Table 4: Other Methods List
	In the previous section 2.2.1, a description of the methods included in the FIESTA-IoT Analytics tool was provided. In this section, the description of the list of methods and the corresponding input parameters (along with the parameter data type) is presented.
	1. Pre-processing
	Table 5 provides a description of the input parameters for the pre-processing methods.
	Table 5: List of methods and parameters for pre-processing techniques.
	2. Unsupervised Learning
	Table 6 provides a description of the input parameters for the unsupervised learning methods.
	Table 6: List of methods and parameters for unsupervised learning techniques.
	3. Supervised Learning
	In Table 7 a description of the input parameters for the supervised learning methods is provided.
	Table 7: List of methods and parameters for supervised learning techniques.
	4. Other Methods
	The corresponding methods do not require any parameters: FFT, Periodogram and Correlation.
	The FIESTA-IoT Analytics tool has integrated into the response of a given data analysis query a set of error messages to enable both the experimenter and potentially the FIESTA-IoT platform to identify the origin of the error.
	Table 8: List of error messages and corresponding descriptions.
	In this section two use case examples of the FIESTA-IoT Analytics tool are provided.
	In the first use case, we illustrate the FIESTA-IoT Analytics tools performance in correlation analysis of data (using power data from the UNIS testbed, where an example of the SPARQL query request is shown in Figure 3) drawn from the IoT-Registry. Correlation enables the experimenter to determine dependencies/similarities that may exist between sensors. Such information can then be used to infer if sensors are measuring phenomena with similar dynamics. To this end, the FIESTA-IoT Analytics tool first applies an outlier removal algorithm (for suppressing artefacts that would reduce the effectiveness of carrying out correlation analysis), where then the correlation function is then called. The JSON body of the HTTP POST request sent to the FIESTA-IoT Analytics tool is shown in Figure 4.
	/
	Figure 3: SPARQL query body for obtaining power sensor data and time stamps
	/
	Figure 4: POST request body for FIESTA-IoT Analytics tool (SPARQL sentence shown in Figure 3)
	The outcome of the FIESTA-IoT Analytics tool is shown in Figure 5. It should be noted that along the diagonal of the matrix, the output is equal to one (unless the data set is missing and the tool has set the correlation equal to zero) as it corresponds to the self correlation of the sensor. While the off-diagonal elements correspond to the correlation between different sensors. From Figure 5, it can be observed that most of the power sensors are uncorrelated with each other. This indicates that the activity of each sensor is largely independent of the neighbouring sensors, thereby indicating that activity profiles of each sensor are largely dissimilar.
	/
	Figure 5: Correlation between sensors
	In the next use case, a clustering algorithm was applied to the data points obtained from the SPARQL query shown in Figure 3. Clustering data sets enables the experimenter to identify patterns of interest that may arise in the data. Figure 6 illustrates the POST request made to the FIESTA-IoT Analytics tool, where a Low pass digital filtering was first applied to reduce high frequency noise artefacts.
	/
	Figure 6: POST request for filtering and clustering
	To determine the correct number of groups so as to cluster the data appropriately, a measure of fit known as the silhouette coefficient (SC) was used. The coefficient is between [-1,1], where 1 is generally a good fit, that is the clusters are well separated and -1 is a poor fit. Using this approach, it was determined that 4 clusters with a silhouette coefficient of 0.94 was to be used. Figure 7 illustrates the label for each time point, that is, the “state of activity” for each time point. To determine the magnitude of the activity level, the magnitude of the centroids were taken. The centroids of the respective clusters were: Cluster 1 = 2303, Cluster 2 = 2075, Cluster 3 = 2380 and Cluster 4 = 2572, where high and low activities can then be determined. From Figure 7 we can observe that the nominal activity of the sensors is in cluster 1. Low activities corresponding to cluster 2 were capture between samples 2-8, 10-13 and 160-180. While high activity clusters 3 and 4 where for the samples indices greater than 246. Such analysis enables the experimenter to reduce the dimensionality of highly complex data sets, to make simple inferences.
	/
	Figure 7: Data clustering
	3 FIESTA-IOT Reasoning
	3.1 Introduction
	3.2 Architecture
	3.3 Reasoning API
	3.3.1 Rule Resource
	3.3.1.1 Get all rules API
	3.3.1.2 Get Rule by ID API
	3.3.1.3 Create rule
	3.3.1.4 Update Rule API
	3.3.1.5 Rule validation

	3.3.2 Register Rule Resource
	3.3.2.1 Get all registered rules API
	3.3.2.2 Get register rule by id API
	3.3.2.3 Register rule API
	3.3.2.4 Update register rule API

	3.3.3 Execution Resource
	3.3.3.1 Get All executions
	3.3.3.2 Get Specific Execution
	3.3.3.3 Execute Rule

	The FIESTA-IoT Reasoning component is an implementation of a semantic reasoner to work on top of the FIESTA-IoT platform. A semantic reasoning engine is a rule based engine that is able to infer logical consequences from a set of IoT measurements. In doing so, the FIESTA-IoT Reasoner simplifies the creation of rules, which are generated and stored in a rule repository. This component provides a set of API services and a User Interface (UI) for experimenters, making it easy to design and execute rules base on the Apache Jena open source framework. The reasoning module can be used by experimenters to create notifications or alerts based on the rules that they set for specific types of measurements coming from the FIESTA-IoT testbeds. For example, the experimenters might set rules in the form of expressions “if (condition) then (result)” as below:
	 If (temperature) > (25degrees) then (notify_hot)
	 If (speed) < (30km/h) then (notify_traffic)
	 If (temperature) < (19degrees) and (humidity) > (60%) then (notify_unhealthy)
	In Figure 8 we provide an overview of the architecture of the FIESTA-IoT Reasoning engine. The central point of the architecture is the Reasoning Service Engine, which is the main component responsible for performing the reasoning services. This component is also connected with the FIESTA-IoT services and specifically with the IoT Registry (through its service endpoints) for getting the list of available sensors and quantity kinds for creating the rules and the measurements, upon which the rules will be executed.
	The Reasoner Service Engine exposes three APIs for (i) Rule Creation, (ii) Rule Registration and (iii) Rule Execution, which are explained in detail in the next subsections. These APIs are connected with a MySQL database for storing the rules and the results of the executions.
	The experimenters are provided with two options for using the Reasoning Engine: (i) through a web application user interface developed using AngularJS or (ii) thorough their own client application using REST APIs provided by the Reasoning Engine.
	/
	Figure 8: FIESTA-IoT Reasoning Architecture
	In Figure 9 an example sequence diagram for creating a new rule is depicted. The first part shows the authentication procedure so that the experimenter can get a new token to be used for the next calls. When the experimenter wants to create a new rule, he sends through the API the new request to the reasoner service engine including all data with respect to the quantity kind, the sensor id (to whom the rule will be applied), etc. The Reasoner Service Engine requests then the validation that the information for the sensor and the quantity kind are ok. If this validation succeeds, the Reasoner Service Engine sends the data to the MySQL DB to add the new rule. The MySQL DB then replies with the validation (or error) message which is forwarded to the experimenter.
	Figure 9: Example sequence diagram for creating a new reasoning rule
	In Figure 10 an example sequence diagram for executing a rule is depicted. Same as before the authentication process precedes anything else. Then, the experimenter through the API sends a request for a new execution, by submitting the required data for the rule to be executed. The Reasoner Service Engine requests from the MySQL DB the list of registered rules, to validate the requested rule. Then the Reasoner Service Engine stores the information for the new execution to the MySQL DB. Next, the Reasoner Service Engine sends a request to the IoT-Registry for the observations of the selected sensor (for whom the rule is applied) and the selected time period. Finally, the response of the rule is sent to the experimenter.
	Figure 10: Example sequence diagram for creating and running a new rule execution.
	The rest of the section below describes the implementation and usage of the Reasoning Services, while the UI tools for the Reasoning Engine will be described in Deliverable 4.8 [3]. The following sections present some example calls of the respective APIs. More detailed calls and the related response bodies are provided in the Annex.
	Currently, the FIESTA-IoT Reasoning module supports REST APIs for (i) Rule creation, (ii) Rule Registration and (iii) Rule Execution in the following three resources: (i) rule-resource, (ii) register-rule-resource and (iii) execution-resource, as presented in Figure 11. The documentation of the APIs can be found on the FIESTA-IoT portal, under the Help menu. Below, we describe the usage of these APIs.
	/
	Figure 11: Reasoning API
	All requests to the FIESTA-IoT Reasoning API must provide a header with:
	- Content-Type: application/json
	- iPlanetDirectoryPro: SSO Token obtained from the FIESTA IoT authentication API.
	The Rule Resource API provides several services that can be used by experimenters for creating, editing, updating and validating reasoning rules. Figure 12 presents the list of services currently supported in the rule-resource API.
	/
	Figure 12: Rule resource API listing
	The “getAllReasonings” service (presented in Table 9) provides the function for experimenters to get the list of currently created rules, using parameters such as page, size, and sort. Since the list of created rules can be quite long in real deployments, the experimenter can select the rules according to the following parameters below to limit the number of rules.
	curl -X GET --header 'Accept: application/json' 'https://platform.fiesta-iot.eu/reasoner-engine/api/reasonings?page=1&size=10&sort=asc'
	https://platform.fiesta-iot.eu/reasoner-engine/api/reasonings?page=1&size=10&sort=asc
	Table 9: Get All rules API
	In Figure 13 an example of the response of the “getAllReasonings” service is provided. The response body includes a json array with the json strings presenting the parameters of each rule. The response code provides the http response which can be the verification that the request was successful or if there are any issues or errors.
	/
	Figure 13: Get All rule example response
	Experimenters can also query the reasoning engine to get a specific rule by providing the rule identification number. This can be done by using the “getReasoning” service of the rule-resource API, using as a parameter only the rule ID, as seen in Table 10. An example of the request for getting a rule by its id is also provided in the table. If the user is authenticated with the FIESTA-IoT platform, the request is as simple as accessing the URL https://platform-dev.fiesta-iot.eu/reasoner-engine/api/reasonings/{rule_id}.
	curl -X GET --header 'Accept: application/json' 'https://platform.fiesta-iot.eu/reasoner-engine/api/reasonings/3'
	https://platform.fiesta-iot.eu/reasoner-engine/api/reasonings/3
	Table 10: Get rule by ID API
	Figure 14 shows the results of the execution of the query for getting rule by its id. As it can be seen, this time the result is a single json string with the parameters of the rule.
	/
	Figure 14: Get rule by ID sample response
	When an experimenter creates a rule, basically he creates a template for the rule, defining the name, description, the quantity kind that the rule should check and an example of sensor from which the rule will check its measurements.
	As discussed in Section 3.2, there are two ways for experimenters to create a reasoning rule, as semantic experts and as non-semantic experts. This was considered as mandatory in FIESTA-IoT in order to simplify the process of creating rules even for users that do not know about RDF and SPARQL queries. Thus, in the reasoning API we provide two services, the “createReasoning” for the semantic experts and the “createReasoningWithnonExpert” for the non-semantic experts.
	In Table 11 the description of the service for creating a rule is provided. The service is similar for the semantic and the non-semantic experts, since the latter is mainly used for the Reasoning Tool to be described in D4.8. The experimenters have to define some parameters for:
	- Content: this is the main text describing the rule in a SPARQL query format.
	- Description: this is the description of the rule.
	- Sensor: this is an example URI of a sensor to be used for the rule.
	- Latitude, Longtitude: example location details for the sensor.
	- quantityKind: the modality of the sensor, i.e. temperature, humidity, power, etc.
	- unitOfMeasurement: the measurement unit of the sensor, i.e. RH, degreesCelsius, Watt, etc.
	- reasoning: the json string describing the rule to be created.
	An example of the Content parameter for defining a rule for a power sensor “if value > 0.1 then notify_high” is also shown in the table.
	curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
	 "content": "%40prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> . \
	 %40prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> . \
	 %40prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . \
	 %40prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . \
	 %40prefix xsd: <http://www.w3.org/2001/XMLSchema#> . \
	 %40prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . \
	 %40prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> . \
	 %40prefix time: <http://www.w3.org/2006/time#> . \
	 %40prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . \
	 %40prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type ssn:Observation), \
	 (?observation ssn:observedProperty ?observedProperty), \
	 (?observedProperty rdf:type m3-lite:Power), \
	 (?observation ssn:observationResult ?sensorOutput), \
	 (?sensorOutput ssn:hasValue ?obsValue), \
	 (?obsValue dul:hasDataValue ?dataValue), \
	 (?obsValue iot-lite:hasUnit ?unit), \
	 (?unit rdf:type m3-lite:Watt), \
	 greaterThan(?dataValue, “0.1”^^xsd:double) -> (?observation reasoning:announce “notify_high”^^xsd:string). \
	 ", \
	 "description": "string", \
	 "id": 0, \
	 "latitude": 0, \
	 "longitude": 0, \
	 "name": "string", \
	 "quantityKind": "string", \
	 "sensor": "string", \
	 "unitOfMeasurement": "string" \
	 }' 'https://platform.fiesta-iot.eu/reasoner-engine/api/reasonings'
	Table 11: Rule creation for Semantic Expert API
	Experimenters may also need to change some parameters in the rules they have created at some point. For this, the Reasoning Engine provides a service for updating the rules by using the “updateReasoning” service using a PUT command and changing the content of the rule, as seen in Table 12.
	curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
	 "content": "%40prefix iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#> . \
	 %40prefix m3-lite: <http://purl.org/iot/vocab/m3-lite#> . \
	 %40prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . \
	 %40prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . \
	 %40prefix xsd: <http://www.w3.org/2001/XMLSchema#> . \
	 %40prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . \
	 %40prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> . \
	 %40prefix time: <http://www.w3.org/2006/time#> . \
	 %40prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . \
	 %40prefix reasoning: <https://fiesta-iot.eu/reasoning#> .(?observation rdf:type ssn:Observation), \
	 (?observation ssn:observedProperty ?observedProperty), \
	 (?observedProperty rdf:type m3-lite:Power), \
	 (?observation ssn:observationResult ?sensorOutput), \
	 (?sensorOutput ssn:hasValue ?obsValue), \
	 (?obsValue dul:hasDataValue ?dataValue), \
	 (?obsValue iot-lite:hasUnit ?unit), \
	 (?unit rdf:type m3-lite:Watt), \
	 greaterThan(?dataValue, “0.1”^^xsd:double) -> (?observation reasoning:announce “notify_high”^^xsd:string). \
	 ", \
	 "description": "string", \
	 "id": 0, \
	 "latitude": 0, \
	 "longitude": 0, \
	 "name": "string", \
	 "quantityKind": "string", \
	 "sensor": "string", \
	 "unitOfMeasurement": "string" \
	 }' 'https://platform.fiesta-iot.eu/reasoner-engine/api/reasonings'
	Table 12: Update rule API
	When experimenters want to create or update some rules, to ensure that they are in the correct format before they are executed, they must be validated, using the “validateRule” service as seen in Table 13. This service takes two parameters for the rule id and the sensor id and then provides the validation response that can be true or false and a message string describing the result of the validation (i.e. what error occurred).
	curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
	 "rule": "10", \
	 "sensorId": "https://platform-dev.fiesta-iot.eu/iot-registry/api/resources/x1AlxibeGRXJDPUbYHcB9Wol22kDiTEwzjR1t445JQfIPuv0YJivjsrb14DRkpj7mVw5_Ax4eVEsDr1PMu0AJxoj0uQFEZhf743kKon7QVRc-DmsGDO9E6fxBK6Oc9pd" \
	 }' 'https://platform.fiesta-iot.eu/reasoner-engine/api/rule/validate'
	Table 13: Rule validation API
	The Register Rule Resource API provides several services that can be used by experimenters for registering a rule that they have created previously so that they can then execute it on their experiment. By registering a rule, the experimenter defines specifically for which sensor (or set of sensors) the rule will execute. The Register Rule Resource API provides services for retrieving the list of registered rules, for registering a new rule, for updating a rule registration and for getting a specific registered rule. In Figure 15 the list of services currently supported in the rule-resource API are presented.
	/
	Figure 15: List all api in register rule resource
	The “getAllRegisterRules” service (presented in Table 14) provides the function for experimenters to retrieve the full list of currently registered rules in a similar way like the “getAllRules” service, using parameters such as page, size, and sort. However, here, by accessing this service, the experimenter will only retrieve the list of rules he has registered and not the rules registered by other experimenters. Since the list of registered rules can be quite long in real deployments, the experimenter can select the registered rules according to the following parameters below to limit the number of rules, same as in the “getAllRules” service described in Section 3.3.1.1. The table also shows an example of the request to get the list of registered rules starting from page 5 with a page size of “10” and sorted descending according to their id.
	curl -X GET --header 'Accept: application/json' 'https://platform.fiesta-iot.eu/reasoner-engine/api/register-rules?page=5&size=10&sort=desc'
	OR
	https://platform.fiesta-iot.eu/reasoner-engine/api/register-rules?page=5&size=10&sort=desc
	Table 14: Get all register rule API
	Figure 16 shows the response of the previous request, which can be either a json array containing the descriptions of the registered rules or a single json string.
	/
	Figure 16: Get All register rule sample response
	Experimenters can also query the reasoning engine to get a specific registered rule by providing the rule registration identification number. This can be done by using the “getRegisterRule” service of the register-rule-resource API, using as a parameter only the registration ID, as seen in Table 15.
	curl -X GET --header 'Accept: application/json' 'https://platform.fiesta-iot.eu/reasoner-engine/api/register-rules?page=5&size=10&sort=desc'
	OR
	https://platform.fiesta-iot.eu/reasoner-engine/api/register-rules?page=5&size=10&sort=desc
	Table 15: Get rule by ID
	For registering a rule, the experimenters should access the “createRegisterRule” service (see Table 16), where they must define the json string of the rule registration. In the json string, the experimenters must define the rule that they want to register and provide details regarding the sensor they are checking with the rule.
	- "ruleID": string
	the id of the rule that was previously created and needs to be registered.
	- "Name": string
	the name of the rule to be registered.
	- "Description": string
	this is the description of the rule registration.
	- "Sensor": string
	this is an example URI of a sensor to be used for the rule.
	- "Latitude", "Longtitude": example location details for the sensor.
	- "quantityKind": string
	the modality of the sensor, i.e. temperature, humidity, power, etc.
	- "unitOfMeasurement": string
	the measurement unit of the sensor, i.e. RH, degreesCelsius, Watt, etc.
	curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
	 "description": "string", \
	 "latitude": 0, \
	 "longitude": 0, \
	 "name": "string", \
	 "quantityKind": "string", \
	 "ruleId": 0, \
	 "sensor": "string", \
	 "unitOfMeasurement": "string" \
	 }' 'https://platform.fiesta-iot.eu/reasoner-engine/api/register-rules'
	Table 16: Register rule API
	Similar as with the rule creation, the Reasoning Engine includes also a service (see Table 17) for updating the registered rules, via accessing the “updateRegisterRule” service and defining the new content of the rule registration, i.e. the new sensor.
	- "ruleID": string
	the id of the rule that was previously created and needs to be registered.
	- "Name": string
	the name of the rule to be registered.
	- "Description": string
	this is the description of the rule registration.
	- "Sensor": string
	this is an example URI of a sensor to be used for the rule.
	- "Latitude", "Longtitude": example location details for the sensor.
	- "quantityKind": string
	the modality of the sensor, i.e. temperature, humidity, power, etc.
	- "unitOfMeasurement": string
	the measurement unit of the sensor, i.e. RH, degreesCelsius, Watt, etc.
	curl -X PUT --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{ \
	 "description": "string", \
	 "id": 0, \
	 "latitude": 0, \
	 "longitude": 0, \
	 "name": "string", \
	 "quantityKind": "string", \
	 "ruleId": 0, \
	 "sensor": "string", \
	 "unitOfMeasurement": "string" \
	 }' 'https://platform.fiesta-iot.eu/reasoner-engine/api/register-rules'
	Table 17: Update register rule API
	After creating and registering a rule, the next step is to execute the rule to see the reasoning results. For this, the Reasoning Engine provides the Execution Resource API with services for retrieving previous executions, creating a new execution and retrieving a specific previous execution, as seen in Figure 17
	/
	Figure 17: Rule execution API
	The “getAllExecutions” service (presented in Table 18) provides the function for experimenters to retrieve the full list of previous executions of their registered rules in a similar way like the “getAllRules” service, using parameters such as page, size, and sort. However, here, by accessing this service, the experimenter will only retrieve the list of their own previous executions and not the executions of other experimenters. Since the list of previous executions can be quite long in real deployments, the experimenter can select the previous executions to retrieve according to the following parameters below in order to limit the number of results, same as in the “getAllRules” service described in Section 3.3.1.1.
	curl -X GET --header 'Accept: application/json' 'https://platform.fiesta-iot.eu/reasoner-engine/api/executions?page=5&size=10&sort=asc'
	OR
	https://platform.fiesta-iot.eu/reasoner-engine/api/executions?page=5&size=10&sort=asc
	Table 18: Get All executions API
	Experimenters can also query the reasoning engine to get a specific previous execution by providing the execution identification number. This can be done by using the “getExecution” service of the execution-resource API, using as a parameter only the execution ID, as seen in Table 19.
	curl -X GET --header 'Accept: application/json' 'https://platform.fiesta-iot.eu/reasoner-engine/api/executions/13'
	OR
	https://platform.fiesta-iot.eu/reasoner-engine/api/executions/13
	Table 19: Get detail execution API
	The last action an experimenter must perform to execute a rule is to access the “createExecution” service and create a new execution, by providing a textual description in a json format of the execution, setting the required parameters (see Table 20).
	If the experimenter wants to get the reasoning results only on the latest value, then the started/ended should be the same value and should be set to the current date/time. Otherwise, setting the started and ended at different values, the rule will be executed to the list of measurements within these times.
	The response of an example execution can be seen in Figure 18, where the response body includes the results of the execution, containing also the inference results.
	- "started": datestring
	the starting date of the dataset that will be checked by this rule.
	- "ended": datestring
	the ending date of the dataset that will be checked by this rule.
	- "executeType": integer
	can be “1” if the experimenter wants to get results only on the latest value or “2” if the experimenter wants the results on a time series.
	- "registerRuleId": integer
	The id of the registered rule that will be executed.
	curl -X POST --header 'Content-Type: application/json' --header 'Accept: */*' -d '{ \
	 "ended": "2017-10-23T14:04:26.542Z", \
	 "executeType": 1, \
	 "registerRuleId": 15, \
	 "started": "2017-10-23T14:04:26.542Z" \
	 }' 'https://platform.fiesta-iot.eu/reasoner-engine/api/executions'
	Table 20: Execute rule API
	/
	Figure 18: Example Execute rule response
	4 FIESTA-IOT Monitoring
	4.1 Testbed Monitoring
	4.1.1 Provided Features
	4.1.2 Integration into the platform
	4.1.3 Monitoring Tests and Collected Quantities
	4.1.4 Components
	4.1.4.1 Dashboard
	4.1.4.2 Detailed View
	4.1.4.3 Testbed Management
	4.1.4.4 Notification

	4.1.5 Separation to other components

	4.2 FIESTA-IoT Platform Monitoring
	4.2.1 Install and Run
	4.2.1.1 Installations on Graylog VM
	4.2.1.1.1 MongoDB
	4.2.1.1.2 ElasticSearch
	4.2.1.1.3 Graylog Server + Web

	4.2.1.2 Installations on FIESTA-IoT Platform machine

	4.2.2 Graylog web Dashboard

	To have a way to quickly overview the testbeds, their overall situation and the data that is provided by them, a tool for monitoring the testbed data was implemented.
	The Testbed Monitoring Tool shall continuously collect information from the testbeds to monitor them or, being more precise, the data of the testbed that is stored in the FIESTA-IoT platform. For this it collects data from different components but mainly from the IoT-Registry. As the queries can be time consuming it is crucial to do these in proper time intervals. The gathered data will be analysed in different ways. For the basic overall status, the latest observations of every sensor are calculated and visualized to get an overall overview. Other data are the trend of every sensor to visualize them on the one hand but also to find any malfunctions of them.
	/
	Figure 19: The Testbed Monitoring Tool in the FIESTA-IoT platform
	For this, the collected data will be stored in a database. But the data will be stored without semantic information and only for a smaller time frame that is proper to calculate trends. The stored data is used to provide the information explained before. The information can be obtained mainly via a GUI that will visualize the data to give a quick impression of the situation. Additionally, some information can be retrieved via REST interface to get the collected or calculated data raw. Another possibility to get informed is via a notification system. This allows the user to trigger notifications when the state of one or more testbeds has changed, either from bad to good for experimenters or the opposite for testbed providers.
	The motivation to establish such a system is to give the users of the FIESTA-IoT platform an overview of the health state of testbeds before starting an experiment. An experiment can last a very long time. So, it would be worth to get an experience of the data that will be consumed during this time. Also, the state of the gathered data during the experiment can be checked after the experiment, if the data is relevant and there were no gaps in the data stream. But also, the testbed owners can check that their data is transferred to the platform successfully. Often testbed owners have their own systems to check the health of their equipment, but here the data as they are provided to other users of this data is checked.
	The Testbed Monitoring is integrated into the portal and can be found under the tools section. It is integrated using an iframe and started as separate instance. It uses the role management of the security solution to determine the role of the user to show different views dependent of the role of the user, either registered user, experimenter, testbed owner or FIESTA administrator.
	/
	Figure 20: The Testbed Monitoring Dashboard
	The visual part of the Testbed Monitoring consists of a dashboard which lists all testbeds with some basic information like the number of sensors having an observation in the last 2 hours and the total number of registered sensors. The dashboard can be seen in Figure 20. Additionally, all testbeds are shown in a map and their locations are marked. When clicking on a testbed, a detailed list of all registered sensors is shown. The sensors will be shown with the latest observation value and the time it was made. Also, the type of the sensor is shown. If a sensor is clicked more detailed information will be shown. A graph that shows the trend of the measured quantity over the time and other information like the typical time interval is shown.
	The testbed management view is only visible to FIESTA-IoT administrators. Here a new registered testbed can be added for monitoring. This is needed when a testbed was added to the platform and all sensors were registered and are working properly. Also, testbeds can be removed again from monitoring.
	The notification system can be used to select one or more testbeds and define a trigger when a notification to a user shall be sent. This can help to postpone an experiment to a situation when all involved testbeds are in a state which is acceptable for experimenting. Also, testbed owners can define some triggers when they want to get notified when there is a problem in their provided data.
	The analysis of data is done in the background and uses the gathered data. It will shape the data for visualizing and querying, but also tries to calculate and determine some trends to detect a change in the delivery of testbed data. This will be done in a long-term manner and can detect a frequency drift or changes in the accuracy of the sensor.
	The Testbed Monitoring is running as a Flask App and so is separated from the components in the Wildfly container. In order integrate it into the portal with the help of an iframe, an nginx proxy was setup to make it available under the same namespace of the portal. The website is using a REST API and websockets to exchange data between the backend and the website in the browser. The nginx instance will bypass both communication ways. It also assures that the header information for the security component is still available. By integrating the monitoring into the portal namespace, the access by users is secured and users need to register to use the service.
	The security component of the platform is used to get the role of the visiting user. This is needed to adapt the view, as not every role can see everything.
	The backend of the Testbed Monitoring queries the IoT-Registry locally on the platform. It will use the local open port and accesses the service directly to query the needed data. As the Testbed Monitoring is placed in the platform it can also query other components like the EEE to get other necessary information or the DMS to passively observe specific data.
	The Testbed Monitoring will query the IoT-Registry component of the platform mainly for gathering data. It will collect the registered testbeds and the corresponding resources that are the sensors that will provide the observations. The observations will be collected and stored per sensor.
	The process of gathering data is done as follows. First the IoT-Registry will be checked for the registered testbeds. All testbeds will be added as not activated. This process will be repeated every day to check for newly added or removed testbeds. The querying of resources is also done daily. It will query the IoT-Registry for all sensors that have a type, a quantity kind, a unit, and a location and are connected to an activated testbed. Newly found resources will be added, removed ones will be deleted. The values of the attributes of the sensor are converted into a leaner format, cutting away some of the semantic notation. The gathering of observations will be done where every x hours the observations of the last x hours will be retrieved. The observations will be converted, prepared and stored per sensor. For every sensor only data of the last month is stored. This data will be used to do the analytics and to calculate quality statements for every sensor.
	The stored data will be used for the visualization in the GUI and to feed the API. Also, the analytics tasks use the gathered data and generate additional data for every sensor and testbed that can be consumed by the GUI and the API.
	For the GUI, the latest observation per sensor and the latest values for a specific sensor can be directly taken from the prepared dataset, also the location per sensor is already available. Calculated are the number of active sensors per testbed and the combined location of all sensors of a testbed for example.
	For the GUI, the latest observation per sensor and the latest values for a specific sensor can be directly taken from the prepared dataset, also the location per sensor is already available. Calculated are the number of active sensors per testbed and the combined location of all sensors of a testbed for example.
	The Components of the Testbed Monitoring can be categorized into three parts, the background tasks, the GUI and the API. The background tasks will query the IoT-Registry for data stored in the platform as well as preparing them for the usage in the GUI. Also, the background tasks will do the analytics. The REST API will provide collected and calculated data from the Monitoring that can be used by other components and will be used by the GUI to add on-demand actions like showing graphs or activating testbeds. The GUI is the main part that will be used by Experimenters and Testbed Owners. It consists of four main parts, the dashboard, the Detailed View, the Testbed Management and the Notification System.
	The Dashboard is the main entry for the GUI. It can be used by any user and will show the testbeds activated for monitoring in a table and their overall status.
	In Figure 20 can be seen the dashboard. It consists of two parts, the table of listed testbeds and a map where the location of the testbeds is marked. If a testbed is clicked, a detailed view of the testbed is opened.
	The Detailed View shows a list of the registered sensors that belong to the testbed.
	/
	Figure 21: The Testbed Monitoring Detailed View
	All resources of the testbed are listed with their respective observed quantity kind, the latest observation with time, value and unit, and the location of the sensor as seen in Figure 21. When a sensor is clicked, a graph is shown that lists the latest values of this sensor.
	The Testbed Management is available for FIESTA administrators only. Here testbeds can be (de)activated for monitoring. As data will be collected only when the testbeds are activated, this can be helpful to only collect data when the testbed and all resources are registered and the workflow is established. This can be helpful as the collected data will be used in analytics tasks and not proper working resources could lead to false interpretation of the data.
	The notification system can be used to get notified when the state of one or more testbeds have changed their overall status. This can be used by experimenters when a testbed which will be involved in an experiment is not performing well enough or when resources which are used in an experiment are not sending data to the FIESTA-IoT platform anymore or have been deregistered. Also, testbed owners could register for notifications to get feedback for the process of transferring the sensed data into the platform.
	The Testbed Monitoring will separate from similar components in the platform, the FIESTA-IoT Analytics and the Platform Monitoring that is introduced in the next section. The Analytics Service will work on the data and enhances it, while the Testbed Monitoring tries to analyze the quality of data by comparing observations on a bigger timescale. It tries to determine frequency drifts and to find sensors that are sensing probably not correctly by analyzing sensors measuring the same phenomena in the same region. The Platform Monitoring will monitor the components of the testbed itself. It tries to determine components that behave different from normal operation.
	FIESTA-IoT Platform Monitoring is performed in 2 ways:
	- Monitoring Java Virtual Machine (JVM)
	- Monitoring logs generated by various components.
	In this deliverable, we will not be detailing how monitoring of the JVM is done as this was already explained in Deliverable 4.7 [4]. However, in this deliverable, we focus on how logs generated by various components can be monitored. The logs provide better understanding of execution of component’s functionality and are important to detect bugs in the component. These logs can be analysed for better understanding and bug free FIESTA-IoT Platform. To perform analysis on the logs we use the Graylog tool.
	The main idea behind Graylog is to have all the logs generated by different components in a central repository, to analyse the logs and to discover and resolve issues faster. It also allows system administrators to perform queries on the stored/collected logs. Graylog offers a web client where system administrators can monitor the performance of the system based on the collected logs. To do so, Graylog offers wide range of functionalities such as search on large-scale log based data, dashboard for quick visualizations of metrics, triggers and alerts and collector that enables easy configuration of the technology used to ship logs to Graylog. Beyond the above-mentioned functionalities, Graylog offers secured access to the logs as logs can hold critical information and REST APIs to access stored information. Further, Graylog architecture follows support for cluster deployment.
	/
	Figure 22: Graylog Architecture.
	A successful deployment of Graylog stack requires mongoDB, ElasticSearch, Logstash and Java8+. Its collector can be run on various platforms. Within FIESTA-IoT ecosystem, Graylog is only available to platform administrators and its stack is deployed as shown in the previous Figure 22.
	With respect to the FIESTA-IoT platform that has multiple components running on various technologies (Wildfly, OpenAM and MySQL), Graylog provide a way to monitor the performance of FIESTA-IoT platform and easily browse through errors occurring if any.
	Below we provide in brief installation guide for all the components and requirements related to successful deployment of Graylog stack. Once installed, the administrator should first ssh to the Graylog VM using
	ssh –L 9000:localhost:9000 <USERNAME>@<HOST_IP>
	Then only they can access the Graylog web using http://localhost:9000. This is done for security purposes.
	The following Table 21 lists requirements for the smooth working of Graylog server and the accompanying web.
	Table 21 Requirements
	In case java is not installed use following commands:
	sudo add-apt-repository ppa:webupd8team/java
	sudo apt-get update
	sudo apt-get install oracle-java8-installer
	Once Java is installed MongoDB and ElasticSearch should be installed before proceeding to install Graylog server and Graylog Web. Note that these installations should be done on Graylog VM.
	MongoDB can be installed using following command
	sudo apt-get install mongodb-server
	The above commands will install the latest version of mongoDB. Once installed its configuration file is present in /etc folder under the name mongo.conf. Admins can update the configuration depending on the needs. We in FIESTA-IoT use basic default configuration. Again, if the configuration is changed it is advised to restart the server using
	sudo service mongodb restart
	After successful installation of mongoDB, ElasticSearch can be installed using
	wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
	echo "deb https://artifacts.elastic.co/packages/5.x/apt stable main" | sudo tee -a /etc/apt/sources.list.d/elastic-5.x.list
	sudo apt-get update && sudo apt-get install elasticsearch
	sudo su
	cd /var/lib/elasticsearch/
	mkdir data
	mkdir logs
	sudo chown elasticsearch:elasticsearch ../elasticsearch
	cd elasticsearch/
	sudo chown elasticsearch:elasticsearch *
	The above commands will install the latest version (v5.5.1 at the time of writing of this document) and will create elasticsearch.yml in the /etc/elasticsearch/ folder. Administrators are advised to change the elasticsearch.yml with following entries:
	cluster.name: graylog
	node.name: graylogFiesta
	path.data: /var/lib/elasticsearch/data
	path.logs: /var/lib/elasticsearch/logs
	network.host: 0.0.0.0
	http.port: 9200
	discovery.zen.ping.unicast.hosts: ["<HOSTIP>:9200"]
	This is the minimal configuration that is needed for the successful installation. Note that here the <HOSTIP> is the IP address of the machine. We are further not going into details of each entry as they are well explained in the ElasticSearch documentation. Again, if the configuration is successfully updated, it is advised to restart the server using
	sudo service elasticsearch restart
	This will restart the graylogFiesta ElasticSearch node.
	After successful installation of mongoDB and ElasticSearch, Graylog server and its web component can be installed using:
	wget https://packages.graylog2.org/repo/packages/graylog-2.3-repository_latest.deb
	sudo dpkg -i graylog-2.3-repository_latest.deb
	sudo apt-get update && sudo apt-get install graylog-server
	This will install Graylog server version 2.3 and the Graylog web component. Once installed, it is essential that Graylog now connect to mongoDB and ElasticSearch. The configuration of this connection can be found in server.conf file located in /etc/graylog/server/. The minimum configuration that one should perform is listed below:
	Once this is done, the administrator should restart the server using
	sudo service graylog-server restart
	This will restart the Graylog server that also hosts the web component. Note that here <USENAME>, <PASSWORD> and a <SECRET> should be provided along with the ElasticSearch binding IP <ESBINDINGHOST>. This <ESBINDINGHOST> should be same as that ElasticSearch publishes.
	Logstash components should be installed on the VM where FIESTA-IoT platform is running so that logs can be pushed to the Graylog VM. Following provides a detailed guide towards installation and configuration of Logstash on the VM.
	To install Logstash use following:
	wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
	echo "deb https://packages.elastic.co/elasticsearch/2.x/debian stable main" | sudo tee -a /etc/apt/sources.list.d/elasticsearch-2.x.list
	echo "deb https://packages.elastic.co/logstash/2.4/debian stable main" | sudo tee -a /etc/apt/sources.list
	sudo apt-get update && sudo apt-get install logstash
	The above commands will create logstash directory under /opt/logstash and will create a conf.d folder under /etc/logstash.
	Once conf.d is created, we now create a configuration file in the /etc/logstash/conf.d/. We should name this file as logstash.conf. This file should contain:
	Note that here <TYPE1> should be a component name from where the logs are to be fetched. <PATH>/<LOGFILENAME1> should be the absolute path of the log file. Further, in case multiple components are producing logs, the administrator should configure the “input” and “filter”. They should add another “file” block and another “if” block in the configuration above. Once this is done, the administrator should restart the Logstash service using
	sudo service logstash restart
	After a successful start, administrators can check the Logstash logs at /var/log/logstash/. In order to check the syntactical errors in the configuration file, administrators can use following command
	opt/logstash/bin/logstash -f /etc/logstash/conf.d/logstash.conf –t
	Note that the above will install Logstash version 2.4 this version is not latest version.
	Once all the dependencies are installed, as said before the admin should first ssh to the Graylog VM using
	ssh –L 9000:localhost:9000 <USERNAME>@<HOST_IP>
	then only they can access the Graylog web using http://localhost:9000. Further, they need <USERNAME> and <PASSWORD> (set in the server.conf file of Graylog) for authentication.
	After the successful login, the very first time user should further configure the Graylog server. They need to go to http://localhost:9000/system/inputs and launch a new input. They should select “Gelf UDP” as input type and then provide necessary information making sure that the bind address input is the <ESBINDINGHOST> that usually is the IP on which ElasticSearch is publishing and the port is 9200. Once this is done, the user should select “Manage Extractor” and then select “add extractor” that are custom grok patterns for the custom FIESTA-IoT component specific message formats. A sample custom grok pattern that is
	%{TIMESTAMP_ISO8601} \[%{DATA:thread}\] %{LOGLEVEL:LogLevel} %{DATA:package} - %{GREEDYDATA:message}
	Such grok patterns are used to extract information from the log message for analysis purposes. After the configuration is done, administrators can see the parsed log messages and write queries. A sample query looks like
	type:EEE AND LogLevel:ERROR
	Graylog besides querying provide quick visualizations that can be incorporated within a dashboard. Figure 23 shows a sample dashboard with 2 visualizations, one for LogLevel and all components that are publishing the logs. Nevertheless, more visualizations are also possible (like histograms).
	/
	Figure 23: Graylog Quick Access Dashboard
	5 Summary
	This document has presented a set of tools, namely: FIESTA-IoT Analytics, FIESTA-IoT Reasoning and FIESTA-IoT Monitoring as web services that an experimenter can consume. This document has described the implementation, functionality and use cases for such tools.
	The FIESTA-IoT Reasoning component enables the inference of data. This was achieved by allowing the experimenter to either create a set of rules or to select from a set of semantically stored rules to process data. The functionality of the tool was demonstrated with examples. This document provided a comprehensive description of the tools functionality and use cases. The FIESTA-IoT Analytics tool allowed the experimenter to select a set of pre-processing and machine learning algorithms to analyze historical data sets. This document provided a detailed description of the available algorithms and error messages when interacting with the component. Furthermore, this document provided two use case examples that demonstrated the FIESTA-IoT Analytics tool potential in analyzing data obtained from the IoT-Registry. Finally, this document provided a detailed description of the implementation and functionality of the FIESTA-IoT Monitoring tool. Namely, the tool captures information relevant to testbed performance, where a portal provides a convenient dashboard for a user to evaluate current testbed performance.
	This document has addressed the core challenge of providing a set of tools for both processing data as well as performance monitoring of IoT testbeds. For each tool, future work will seek to improve functionality as follows. Namely, for the FIESTA-IoT Analytics tool, we will attempt to increase the number of data analysis tools available to the experimenter, along with a feedback mechanism where the experimenter can evaluate the performance of specific algorithms. For the FIESTA-IoT Reasoning tool, emphasis will be placed on developing complex event processing functionalities. While for the FIESTA-IoT Monitoring tool, mechanisms for using performance data to provide rapid and active feedback to the testbeds will be considered.
	References
	[1] FIESTA-IoT, “Deliverable 3.5: Concept and Development for IoT Data Analytics and IoT Stream and Service Management”, 2016
	[2] FIESTA-IoT, “Deliverable 4.2: EaaS Model Specification and Implementation V2”, 2017
	[3] FIESTA-IoT, “Deliverable 4.8: Infrastructure for Submitting and Managing IoT Experiments”, 2017.
	[4] FIESTA-IoT, “Deliverable 4.7: Infrastructure for Submitting and Managing IoT Experiments V1”, 2016
	APPENDIX I Reasoning examples
	A1.1 Rule resource API
	A1.1.1 Create rule
	A1.1.2 Update rule
	A1.1.3 Validate rule

	A1.2 Register rule resource
	A1.2.1 Rule registration
	A1.2.2 Updating rule registration

	A1.3 Execution resource
	A1.3.1 Get specific execution
	A1.3.3 Execute rule

	}
	}
	"registerRuleId":20,
	"started": "null",
	"ended": "null",
	"executeType":1

