

# Infection Risk Score: Identifying the risk of infection propagation based on human contact

1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19 (COVID-19 2020) 3<sup>rd</sup> Nov 2020

5 1107 2020

Rachit Agarwal, IIT Kanpur, India Abhik Banerjee, Swinburne University of Technology, Australia

# Background

- Current practices to contain pandemic center around general guidelines
  - Social Distancing
  - Wearing masks
  - Contact tracing
- With things easing out in some countries, to reduce the risk of 2<sup>nd</sup> or 3<sup>rd</sup> wave, we need to efficiently manage spatial outbreak in different contexts, such as:
  - Indoor spaces<sup>1</sup> (offices, hospitals, hotels<sup>2</sup>, etc.)
  - Services (delivery, etc.)
  - Social (local gatherings<sup>4</sup>, visits of friends<sup>3</sup>)



<sup>&</sup>lt;sup>1</sup> H. Qian, et al. "Indoor transmission of SARS-CoV-2" medRxiv (2020).

<sup>&</sup>lt;sup>2</sup> "Hotel quarantine linked to 99% of Victoria's Covid cases, inquiry told", The Guardian, 18<sup>th</sup> Aug 2020

<sup>&</sup>lt;sup>3</sup> "Home visits the biggest threat to Victoria's new normal", 9News, 26<sup>th</sup> Oct 2020

<sup>&</sup>lt;sup>4</sup> "Kanpur: Covid-19 norms flouted in Dussehra festivities", Times of India, 27<sup>th</sup> Oct 2020

## Motivation: Current works and issues









- Current work can be categorized into
  - Survey based studies<sup>5, 6</sup>: People report on factors such as medical history, usage of PPE, etc.
  - IoT Based studies: Aarogya Setu<sup>7</sup>, COVIDSafe<sup>8</sup> (survey<sup>9</sup>)
  - Wearables EasyBand<sup>10</sup>
  - Epidemic Modeling based<sup>11</sup>
- Issues with infection tracking innovations and advancements:
  - Disease may not show any symptoms for a long period (exposed state) or even no symptoms (Asymptotic cases)
  - The methods deployed are reactive not pro-active
    - List of infected patient is updated post the tests and isolation process
  - Infected people are typically isolated and not allowed to meet anyone. Thus, such apps cannot tell (for COVID-19 case) if you are exposed

<sup>10</sup> M. Shukla, et al., "Privacy Guidelines for Contact Tracing Applications", arXiv (April 2020), 1–10

<sup>&</sup>lt;sup>5</sup> M. Mhango, et al., "COVID-19 Risk Factors Among Health Workers: A Rapid Review", Safety and Health at Work, 11, 3 (Sept. 2020), 262–265

<sup>&</sup>lt;sup>6</sup> World Health Organization, "Health workers exposure risk assessment and management in the context of COVID-19 virus: interim guidance", 4 March 2020, Technical Report. <sup>7</sup> https://www.mygov.in/aarogya-setu-app/

<sup>&</sup>lt;sup>8</sup> https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

<sup>&</sup>lt;sup>9</sup> M. Islam, et al., "A Review on the Mobile Applications Developed for COVID-19: An Exploratory Analysis", IEEE Access, 8(Aug. 2020), 145601–145610

<sup>&</sup>lt;sup>11</sup> M. Shahzamal, et al., "Airborne Disease Propagation on Large Scale Social Contact Networks", In 2nd IWSS (Pittsburgh, USA), ACM, 35–40.

## Motivation: Questions

- Can management of infection spread be made more proactive?
- Can we estimate the risk of social situations and potential propagation?
- Can individuals and organisations be provided with inputs, based on which they can take early actions?

## Contribution

- Infection risk score metric
  - Based on local neighborhood, transmission likelihood and vulnerability to a disease
- Evaluation using realistic dataset
  - Small scale school specific study
- Adaption of risk score using smartphones
  - Alpha version of the application available to test

#### Risk Score: Risk Propagation Model

• Based on local neighborhood, transmission likelihood and vulnerability to a disease

$$r_{i,t} = \frac{v_{i,t} \times r_{i,t-\Delta t} + \sum_{j \in N_{i,t}} w_{j,t} \times (E_{i,j,t} + r_{j,t-\Delta t})}{1 + \sum_{j \in N_{i,t}} w_{j,t}}$$

k

 $t-\Delta t$ 

- Here
  - Exposure caused by a neighbor j  $\left(E_{i,j,t}\right)$  where

$$E_{i,j,t} = \Delta t \times n_{i,j,t}$$

- $n_{i,j,t}$  is the number of pathogens released by j in vicinity of i
- Neighbor weight  $(w_{j,t})$  or the transmission likelihood
- Node risk score  $(r_{i,t-\Delta t})$  at time t- $\Delta t$
- Self Vulnerability  $(v_{i,t})$ 
  - Such as in/out-door, age, etc.

## Evaluation

- Lack of fine-grained mobility datasets for COVID-19. Best we found<sup>12</sup>
  - School data with 158 rooms, 789 people, 1 day data from 6am to 4:30 pm
    - Not uniform distribution
    - Only 62% rooms occupied
    - Some rooms always empty
- We let the epidemic happen using SIS epidemic model

$$\frac{dS_{i,t}}{dt} = -\frac{\beta S_{i,t}I_{i,t}}{N_{i,t}} + \gamma I_{i,t}$$
$$\frac{dI_{i,t}}{dt} = -\frac{dS_{i,t}}{dt}$$



<sup>&</sup>lt;sup>12</sup> M. Salathé, et al, "A high-resolution human contact network for infectious disease transmission", in Proceedings of the National Academy of Sciences 107, 51 (Dec. 2010), 22020–22025.

#### Results

- **\*\***Assumptions:
- Weights are normally distributed
- Homogenous mixing

Initial infection = 0.00,  $\boldsymbol{\beta} = \{0.0, 0.5, 1.0\}, \, \boldsymbol{\gamma} = 0.0$ Initial infection = 0.01,  $\boldsymbol{\beta} = \{0.0, 0.5, 1.0\}, \, \boldsymbol{\gamma} = 0.0$ 

(b') 5.0 mm (b) (c) 0.04 E 2.5 0.8 1000 2000 0.02 Fraction Alerted 6.0 Time 0.00 -0.02 0.2 -0.04 0.0 (e) Nontrolling (f) 0.8 Fraction Alerted g 6 *رالس*نۍ 2 4 Ę 3. 0.2 2 0.0

Initial infection = 0.00,  $\beta = \{0.0, 0.5, 1.0\}, \gamma = 0.75$ Initial infection = 0.01,  $\beta = \{0.0, 0.5, 1.0\}, \gamma = 0.75$ 



# Risk Score implementation using Smartphone

- Individual risk scores are broadcasted using Bluetooth Low Energy (BLE)
- Each phone computes its instantaneous risk score based on smartphones in its neighborhood
- Does not require a centralized database and is privacy preserving since identity information is not broadcasted

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8   | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|---|---|---|---|---|---|---|----|-----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   | UL | JID |   |    |    |    |    |    |    | r  | 0  | 1  |    | 0  | 0  | w  | 0  |    | 5  | 0  |    |    |    |    |    |

BLE advertising packet format

| 09:04 | - 🛄 🖪 | <b>A</b>                            |         | ‴? .⊪ ? | 7% 🖻 |
|-------|-------|-------------------------------------|---------|---------|------|
| Infec | ction | Risk Score                          |         |         | S    |
|       |       | Neighbor:1.0,rs<br>Current risk:1.0 | ssi:-84 |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       |                                     |         |         |      |
|       |       | Broadcast Risk                      |         |         |      |
|       |       | Ο                                   |         | <       |      |

 $\frac{v_{i,t} \times r_{i,t-\Delta t} + \sum_{j \in N_{i,t}} w_{j,t} \times (E_{i,j,t} + r_{j,t-\Delta t})}{1 + \sum_{j \in N_{i,t}} w_{j,t}}$ 

 $r_{i,t} = -$ 

#### Potential use cases and future directions

- Use cases and dissemination activity
  - Spatial region risk score as

$$r_t^{A_a} = \frac{\sum_{\forall i \in L_a} r_{i,t}}{||L_a||}$$

- Regions could be defined at any spatial scale (building, city, etc.)
- In talks with many organizations that showed interest in our application.
- Future direction
  - Increasing score accuracy
    - Incorporating more contextual information and quantify weights
    - Exposure context parameters
  - Increasing outreach activity

## Conclusion

- We present risk score metric based that on local neighborhood, transmission likelihood and vulnerability to a disease
- Our prototype App based implementation of Risk Score can enforce social distancing where people are more cautious when meeting others.
- Limitations
  - Model: There is lack of fine-grained mobility datasets for COVID-19, making it difficult to use a purely data science/machine learning approach
  - Application: Usage but the risk model is independent of usage related issues.

# Thank you

@ragarwa2, @abhibane
<u>rachitag@iitk.ac.in</u>, <u>abanerjee@swin.edu.au</u>
<u>https://rachit.gitlab.io</u>

For testing application please contact us

Credits (Image Source):

Background: https://www.paho.org/en/news/25-3-2020-similarities-and-differences-covid-19-and-influenza Kanpur: Covid-19 norms flouted in Dussehra festivities", Times of India, 27<sup>th</sup> Oct 2020