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Abstract—Dissemination of information in mobile adhoc net-
works has lately picked up lot of interest. Some studies argue that
the dissemination in these networks should be contained while
some argue that it should not. Research has found that it depends
on the type of the application that is considered. For example,
dissemination of mobile viruses should definitely be contained
however, dissemination of emergency information should not.
Moreover, in the regions where there is less connectivity and very
few mobile devices, dissemination of packets is highly impacted.
Towards this, we would like to propose a mechanism that could
enhances dissemination of information in a sparsely populated
mobile adhoc environment. We use the concept of metapopulation
model and epidemic model and the results obtained after the
analysis of the dataset provided by D4D Organizers. From the
results we obtained, we could say that in our model we could
reach the epidemic state in dissemination process using the
movement pattern of the users (derived from the dataset provided
by D4D organizers).

Index Terms—Human Mobility, Information Dissemination,
Variable Density.

I. INTRODUCTION

Due to vast developments in wireless devices and mobile
network, recently Pocket Switched Network (PSN ) has been
introduced [1]–[3]. A PSN is a mobile adhoc network formed
when devices carried by humans interact with each other. Due
to the human aided mobility, PSNs closely follow human mo-
bility characteristics. Human mobility has vastly been studied
and many spatio-temporal characteristic properties have been
identified that define human mobility. Some of these properties
include jump length, pause time, radius of gyration, frequency
of visits, etc. Recently, studies have revealed that human
mobility not only has spatio-temporal dimension but also has
social dimension [4], [5]. It was also revealed that different
characteristics of human mobility closely follow truncated
power law. It was however also shown that the truncated
power law was also due to the sampling of the data [6]. Due
to the vast identified properties of human mobility, models
usually use only some features of human mobility instead of
incorporating all. Some models use temporal characteristics
in form of periodic, aperiodic and sporadic nature while some
use spatial like centric, orbital, random or social like group
movement, etc. In [7] authors survey different mobility models
using above mentioned features and clearly bring out the
differences between the models.

Recently, epidemics across population have been the fo-
cus of lot of research and various models has been pro-
posed. An epidemic model typically contains two states:

Susceptible(S) and Infected(I). However, there are other states
also used like Recovered(R), exposed or Latent(E) and Pas-
sively immune(M ) by some models. A typical epidemic model
consists of combinations of these states. A comprehensive
survey about the epidemic model could be found in [8], [9]. In
Communication networks, information dissemination has been
closely related to epidemics across the population and consider
SIS or SIR epidemic model, for example, [10]. Further, in
communication networks, information dissemination has been
shown to be influenced by many factors like bursty data [11],
strength of the tie [12], source of the infection, number of
infected devices, human mobility parameters [13], location
preference [14], network structure [15], activity pattern [16],
device characteristics [13], [17], altruism [18] etc. However,
mostly the focus has been limited to the study of effects of
human mobility on information dissemination. Recently, [19]
showed that human mobility in some time can speed up the
information dissemination rate while can also in some cases
suppress the information dissemination rate. The speed up
relates to higher probability of meeting susceptible population
while reduction related to isolation of the infected device.

Moreover, mostly the models based on epidemics using hu-
man mobility considered homogenous population well spread
across the area. However, Watts et al in [20] used the hier-
archical metapopulation model for the dissemination process.
In their model, Watts et al argued that clusters are evident
in a large population and they affects the epidemic spread.
They assumed SIR type epidemic model and allowed human
mobility in terms of changing clusters with a probability
related to levels of clusters jumped. Fig 1 shows clustering
of humans into groups and possible transitions that could
happen. Moreover, in Watts et al model, uniform distribution
of population in the clusters was considered. However, in
realistic case, there is a non-uniform distribution of population
in the clusters and the overall population constantly changes
with respect to time. This affects the dissemination process in
terms of time taken to spread the epidemic in the area.

In a PSN , however, where the structure of the network
is dependent on the humans and the characteristics of mobile
device, we are interested to investigate how information dis-
semination takes place in the dynamic population in contrast
to [13] where constant population size was used. Towards
this, we use insights from the spreading in metapopulation
model [21], data provided by D4D organizers and epidemic
model to formulate our model. In our model, the population is
non-uniformly divided into communities. These communities
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Fig. 1. Hierarchical Metapopulation Model [20].

are the antennas to which the population is associated to in
the country. A group of antennas formulate a bigger commu-
nity known as sub-prefecture and further, collection of sub-
prefectures form a country. According to the metapopulation
model, a user transits from one community to anther using a
transition probability, in our model this transition probability
between two antennas is calculated through the analysis of the
dataset provided by the D4D organizers and through the graph
generated using voronoi tessellation. The transitions could
happen between antennas of different subprefecture as two
neighboring antennas could be in different subprefecture (Cf.
fig. 2). More details on how we calculate transition probability
can be found in section II-B. As a person can move within
a community also, in our model, we assume that devices can
also move within the community (antenna).

As we are concentrating on PSN , a device in a PSN can
pair up with a device within its range and can transmit its data
packets to the paired devices. A device having data packet to
transmit is said to be in Infected(I) state while those not having
the packet are considered to be in Susceptible(S) state. Once
the device in S state has the information it changes its state to
I . We use recovery rate also so as to model realistic scenario.
The recovery rate would mean that the devices are only willing
to transmit the information for certain period. As mentioned
before, characteristics of a PSN is dependent on the humans.
Human can switch off the device and can reopen them any time
causing changes in the structure of the PSN due to change
in the number of active devices. To capture this effect we use
the Latent state (E) of the epidemic model. To distinguish
between devices that are latent but Susceptible and are latent
but Infected, we divide E into two states ES and EI . A
device in ES or EI state does not participate in dissemination
process. However, only devices in S and I participate in the
dissemination process. Further, more comprehensive details
about the model are mentioned in section sec. III.

Further, in this paper, we first analyze the dataset provided
in section sec. II. We then provide detailed description of the
model in section sec. III. We then provide results obtained in
section sec. IV and finally conclude in section sec VI after
providing future work in sec. V.

II. DATA ANALYSIS

In this section, we further analyze data collected by Orange
for the region of Ivory Coast than what has been provided
in [22]. The data is based on the calls made in the region
of Ivory Coast and the mobility of the users. The region of
Ivory Coast has been assigned number of antennas and is
divided into sub-prefectures. The dataset contains the loca-
tions of these antennas and sub-prefectures in longitude and

Fig. 2. Modified metapopulation Model for uneven population distribution
and antenna-subprefecture hierarchy. Movement could occur between neigh-
boring antenna. The neighboring antennas could be in different subprefecture.
Here, a person from antenna Ai could move to antenna Aj with a probability
TPi,j . The antennas Ai and Aj belong to different subprefecture.

latitude format. The dataset is further divided into four sub-
datasets out of which we are interested only in sub-dataset
SET2TSV and sub-dataset SET3TSV. Sub-dataset SET2TSV
and SET3TSV contains pruned mobility patterns of the users
over 5 months. These sub-datasets has been formed by the
logging of call information of the users in Ivory Coast. The
sub-dataset SET2TSV relates users with antennas while sub-
dataset SET3TSV relates users to sub-prefecture. Both these
sub-datasets have information like, user, time, antenna or sub-
prefecture. Moreover, another difference between the two sub-
datasets is that sub-dataset SET2TSV has been sampled for
50,000 users while sub-dataset SET3TSV has been sampled
for 500,000 users over 5 months. However, mobility from these
two sub-datasets can only be inferred as the id of antennas
and the sub-prefectures has been logged when the call was
made and not the actual location of the user. Moreover, we
are interested in the analysis datasets with antennas and sub-
prefectures location and sub-dataset SET2TSV to get useful
information that could be used in our proposed model.

A. Analysis Dataset SUBPREF POS LONLAT.TSV and
ANT POS.TSV

We first analyze dataset SUBPREF POS LONLAT.TSV.
We use the position information of the sub-prefectures to
provide the visualization of the sub-prefectures in the re-
gion of Ivory Coast and visualize the Voronoi tessellation
(Cf. fig. 3(a)). Using Voronoi tessellation we then generate
a graphical structure that connects all sub-prefectures with
common Voronoi edges. As an edge in the graph could lie well
outside the country boundaries, we remove all those edges that
bypass the country. We call the remaining graphical structure
Gsub−pref , (Cf. fig. 3(b)).

Similar to sub-prefectures dataset, dataset ANT POS.TSV
has been provided for antenna locations. We perform similar
procedure on this dataset and generate Voronoi tessellation,
(Cf. fig. 4(a)), and the graphical structure Gantenna, (Cf. fig.
4(b)). Further, we assume that each antenna is assigned to
a sub-prefecture. Depending on the Voronoi tessellation of
the sub-prefectures we then provide an estimate of which
antenna is assigned to which sub-prefecture (Cf. fig. 5(a)).
This leads us to further visualize fig. 5(b) which is the
frequency of number of antennas in the sub-prefectures. As
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(a) Voronoi tessellation for the Sub Prefectures in Ivory Coast
with Sub Prefecture locations.

(b) Gsub−pref .

Fig. 3. Analysis of dataset SUBPREF POS LONLAT.TSV.

we have estimated the region of sub-prefecture using Voronoi
tessellation, the results of the frequency of number of antennas
in the sub-prefectures slightly vary from the frequency of
antennas when actual sub-prefecture region in Ivory Coast are
used, (Cf. fig. 6).

B. Analysis Sub-Dataset SET2TSV

As the sampling of the information in the datasets is based
on the calls made, the data has very high percentage of users
calling from same location. This sampling hampers the correct
estimation of human mobility. We could only infer the mobility
pattern of the user. Lack of actual user coordinates leads us to
map the mobility of the user on Gantenna to get an estimate
of the user mobility. This would give us what antennas a user
would have connected to while they were moving. This would

(a) Voronoi tessellation for the antennas in Ivory Coast with
antenna locations.

(b) Gantenna.

Fig. 4. Analysis of dataset ANT POS.TSV.

give us valuable information like how many times a user stayed
at a location and how many times the user took a certain path.
Further, to estimate the mobility of the user we use shortest
path between two antennas in the graph Gantenna. Thus, from
the sub-dataset SET2TSV we map the mobility of one user
using the Gantenna and determine the antennas that the user
might have been contacted to by the user while moving, (for
user id 48930 Cf. fig. 7(a)). In the figure 7(a) the blue edges
mark the edges that user traversed. The thickness of the edges
determines the number of times the user traversed through that
edge. On the other hand, the size of the node in the graph is
determines the number of times the user has stayed at that
antenna. We then perform this process for all the users in
the sub-dataset SET2TSV for all the period and determine
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(a) Antenna connected to the Sub Prefectures in Ivory Coast.

(b) Frequency of antennas in the Sub-Prefectures in Ivory Coast
estimated using Voronoi tessellation.

Fig. 5. Antennas in the Sub-Prefectures.

a transition probability matrix (Tmantenna). The Tmantenna

contains the normalized weight of the edges accumulated over
5 month period, (Cf. fig. 7(b)).

We now describe our information dissemination model
using the transition matrix formed in the section sec. II-B and
metapopulation model in the next section.

III. MODEL

Consider N devices to be non-uniformly distributed in the
region. The non-uniformity leads to a community structure
in the region. We assume that the devices in a community
(c) are associated to one and only one antenna in the region
at any given time. As discussed in the introduction section,
collection of these antennas form sub-prefecture and collection
of sub-prefectures form a region. Further consider, the number

Fig. 6. Actual antenna frequency in Sub-Prefectures in Ivory Coast.

of antennas(communities) as Nc. As argued by Watts et al,
community structure is evident in the population in a realistic
scenario. A transition from one community to anther occurs
with a probability [20] and the nature of the community [14].
This probability plays an important role in determining which
community has to be joined. We use transition probability
matrix (Tmantenna) calculated after doing the data analysis in
section sec. II-B to determine the jumps from one community
to another. The transition probabilities also provide us the
probability of staying in the same community. Staying in the
same community would mean that the device has not moved
out of the community. This would not restrict the movement
of the device within the community bounds, i.e., the device
would be free to move within the community bounds.

In-order to study the dissemination process, we assume the
devices to be in any of the four states, S, I , ES or EI . State S
would mean that a device is not having the information and is
susceptible to receive it on the other hand state I would mean
that the device has the information and will readily transmit
it to other devices in its transmission range. Irrespective of
whether a device is in state S or state I , the capability of
the device to transmit or receive depends on the user. It could
be possible that a device has the information but has been
switched off by its user. This would hamper the transmission of
the information from the device to other devices. Following the
same argument, if a device does not have the information and it
is switched off it would not be able to receive the information
from other devices. We call such state of devices as latent
state of a device and term them to be in state EI and ES
respectively. At a later time, a device in a latent state could
be switched on, this would mark the transition in the state of
the device from either EI and ES to I and S respectively.

It has been argued in research that communities affect the
dissemination of the information. The rate of the dissemination
process within a community is more than the rate at which
dissemination process takes place outside the community. This
makes us to constrain the devices in state I to be able to
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(a) Antennas reached by user 48930 while moving for first 2
weeks.
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(b) Transition Probability Matrix.

Fig. 7. Sub-Dataset SET2TSV.

only transmit information to devices in the same community
(having same antenna id), in state S and within its Tx.
Further, in epidemic, each community has a different infection
rate, βc where c is a community. This is because of many
factors like, density of the population and immunity strength
of population in the community. Moreover, in a population an
infected person has a recovery rate, δx where x is the person.
In PSN infection rate and recovery rate would mean that
devices in community c and in state I are willing to transmit
the information with the rate βc while a device x in state I
is rejecting the information after some time with a rate δx.
However, we assume that δx for all device in a community

Fig. 8. State diagram with states S and I and their latent states ES and EI

respectively with transition rates between states.

is same and is δc. In order to model βc we use the area of
the community as eq. 1. Thus, the type of epidemic model we
consider is SIS with two additional states ES and EI .

βc = 1 − Ac
Amax

(1)

where Ac is the area or the community c within a region
and Amax is the area of the region under consideration.

The state diagram for a device to make a transition from
one of the states to another can be given by fig. 8. Here, the
transition from state S to state I at time t + ∆t depends on
the infection rate βc. In a community, devices can join as well
as leave. The incoming rates and the outgoing rates are given
by transition matrix found in sec. II-B. We call them as Tj,C
and TC,j where j is another community. The transition rates
between S and ES are given by µS,C and αS,C while that
between I and EI are given by µI,C and αI,C .

In a community i, let Si be the number of devices in state
S at time t, Ii be number of devices in state I at time t,
EI,i be number of devices in state EI,i at time t and ES,i be
number of devices in state ES,i at time t. Considering initial
conditions as S(0) = N − ε, I = ε where ε > 0, from the
model described above, we could formulate rate equations for
one community i using mean field as follows:

dSi
dt

= −βi
SiIi < kR,i >

Ni

+
∑

∀j∈C;j ̸=i
Tj,iSj −

∑

∀j∈C;j ̸=i
Ti,jSi

+δiIi − µS,iSi + αS,iES,i (2)

dIi
dt

=
βiSiIi < kR,i >

Ni

+
∑

∀j∈C;j ̸=i
Tj,iIj −

∑

∀j∈C;j ̸=i
Ti,jIi

−δiIi − µI,iIi + αI,iEI,i (3)

dES,i
dt

= µS,iSi − αS,iES,i + δE,iEI,i

+
∑

∀j∈C;j ̸=i
Tj,iES,j −

∑

∀j∈C;j ̸=i
Ti,jES,i (4)

dEI,i
dt

= µI,iIi − αI,iEI,i − δE,iEI,i

+
∑

∀j∈C;j ̸=i
Tj,iEI,j −

∑

∀j∈C;j ̸=i
Ti,jEI,i (5)
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dNi
dt

=
∑

∀j∈C;j ̸=i
Tj,iSj −

∑

∀j∈C;j ̸=i
Ti,jSi

+
∑

∀j∈C;j ̸=i
Tj,iIj −

∑

∀j∈C;j ̸=i
Ti,jIi

+
∑

∀j∈C;j ̸=i
Tj,iES,j −

∑

∀j∈C;j ̸=i
Ti,jES,i

+
∑

∀j∈C;j ̸=i
Tj,iEI,j −

∑

∀j∈C;j ̸=i
Ti,jEI,i (6)

where N =
∑

∀i∈C S+
∑

∀i∈C I+
∑

∀i∈C ES+
∑

∀i∈C EI ,
< kR,i > is the average degree of the devices in the network
between devices in the community i with R being the area of
the community i. For a network, < kR,i > could be modeled
as eq. 7 [23]. Using the probability of connection in an area
with a population and the attenuation factor (Communication
network parameters), average degree could be defined as
integral of probability of connection for a given density over
the area, yielding eq. 7

< kR,i > = a2πρ
r0τ

1 − τ
∗ (7)

[
R

(
1 +

R

r0τ

)1−τ
− r0

2 − τ

(
1 +

R

r0τ

)2−τ]

2l

where ρ is the density of devices in the area, r0 =
√

(A/(Nπ))
and a and τ are the communication network parameters > 0.
The eq. 7 is modeled for static population, however, when
mobility is introduced < kR,i > would change over time.
This could be modeled as eq. 8 using p as the pause time of
a device on a location [24].

< kR,i >≈ Nr0
3

(
(4 − 2p+ p2) − 4

π
p2r0 − 3(1 − p)r20

)

(8)
Further, analyzing the eq. 3, we could say that there

would be a growth in the population of devices in I when
βiSi<kR,i>

Ni
+

∑C
j=1 Tj,i−

∑C
j=1 Ti,j−δi−µI,i > 0. This gives

basic reproduction number as
βi<kR,i>

Ni
+

∑C
j=1 Tj,i−

∑C
j=1 Ti,j

δi+µI,i
>

1 where epidemic would takeoff.

IV. SIMULATION AND RESULTS

We perform simulation in Python. Initially, each device
operates in omnidirectional mode with the transmission range
Tx = 1km. We consider N = 5000 in an area of
Area ≈ 710∗756km2 (Ivory Coast region). All the results use
Tmantenna for mobility. We assume initially N − 1 devices
are in susceptible state and only one device is in infected state.
Out of these N − 1 susceptible devices some devices are in
latent state.

As the preliminary results, we provide results for the infor-
mation dissemination in the population using our model, (Cf.
fig. 9). This result was obtained for the case when there is
single infected device, δi = 0.975∀i ∈ C, βi as defined in eq.
1. The result shows the percentage of infected nodes over time
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Fig. 9. The time taken to reach the epidemic state in the dissemination
process.

normalized over active population in the area. Initially, due
to more number of susceptible devices the rate of change in
devices in I is more however, over time it reaches an epidemic
state.

V. FUTURE WORK

Here we presented preliminary results. However, more
comprehensive results are to be obtained and to be verified
to see the effect of various parameters used in the model.
Moreover, currently we have not used birth and death process,
i.e., addition of new devices and removal of old devices.
We also would like to incorporate heterogenous population
density in our model. Addition of such concept could add
more realism to the model. We would like to incorporate
it as the future work. Further, a device in PSN can be
equipped with multiple small antennas which could help in
enhancing transmission radius for the device. Using multiple
antennas gives rise to a beam of certain length and width. This
technique is known as beamforming. Effects of beamforming
have already been studied on information dissemination for
both static and mobile networks with positive results [13],
[25]–[28]. Incorporating beamforming in the model would
definitively give an edge and help in enhancing information
dissemination. A brief overview of how it could be done is
explained in sec. V-A below.

A. Adding Beamforming to the model

Dissemination process could be enhanced using different
ways. Some ways studied in literature are mobility and
beamforming. Beamforming is a technique of using multi-
ple device antennas in-order to get a long directional beam
(long range link) with the same operational power as that of
omnidirectional beam. Thus, in our model, we would also
like to use beamforming. We assume that each device is
equipped with m device antennas (DAs), where m could be
different for different devices. Initially all devices use one
DA for omnidirectional transmission with the omnidirectional
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transmission range being Tx. The Tx could also be different
for different devices. Beamforming is done by devices in
state I . In the landmark paper by Watts and Strogatz, [29],
the authors showed that using very few long range links
network diameter can be considerably reduced while network
clustering is maintained thereby escalating the dissemination
phenomenon. We use this result to state that only 0.01% of
the devices in state I are randomly chosen to beamform. The
selected devices randomly choose mx DAs from m available
DAs to determine length and width of the beam. The best
direction of the beam is chosen based on which direction has
the maximum number of devices in S state. The beamforming
device then beamforms in that direction, infects the susceptible
devices and returns back to omnidirectional case. Further,
beamforming is achieved by special arrangement of DAs.
Some realistic ways include Uniform Linear Array Antenna
model (ULA) [30]. Using mx DAs according to ULA model
would lead to a beam of length mx ∗ Tx with different
beamwidth for different angles ∈ [0, 2π]. We would use these
unique directions and gain(beam) patterns of ULA model
and determine number of devices in state S the beamforming
device could connect using that direction. The direction having
the maximum number of devices in S state is chosen for
beamforming. let the chosen direction be θb. The width of the
beam in the direction θb for the ULA model is given using
eq. 9

g(θ, ϕ) =
u(θ, ϕ)

1
4π

∫ 2π

0

∫ π
0
u(θ, ϕ) sin θdθdϕ

(9)

where θ is angle with the z-axis, ϕ with the xy-plane,

u(θ, ϕ) ∝
(

sin(mψ)
m∗sin(ψ)

)2

, ψ = π∆(cos θ − cos θb)/λ and ∆

is the distance between 2 DA’s.
Adding beamforming to the model would change the <

kR,i > as 0.01% devices would beamform. We would like
to use this concept and build our model towards enhancing
information dissemination in realistic environment.

VI. CONCLUSION

In this paper we presented a model where information
dissemination across the population is studied using movement
probability from one community to another calculated using
the dataset provided by the D4D organizers. We used concepts
like epidemic model and metapopulation in our model. To
realize the information dissemination process we have used
SIS epidemic model with two additional states ES and EI .
ES and EI states are the latent states where devices in these
states are not involved in dissemination process. Our result
shows that epidemic state could be reached in the our current
setting.
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