

IEEE MDM' 19 13th June

Detecting Mobile Crowd-sensing Context in the Wild

Rachit Agarwal, Shaan Chopra, Vassilis Christophides, Nikolaos Georgantas, Valérie Issarny

Motivation

(nría_

Motivation

- Identification of context is essential to assess quality of crowd-sensed spatiotemporal datasets collected in the wild and infer human mobility attributes and properties
 - Accelerometer precision can vary when devices are in/out-pocket
 - GPS accuracy can vary in underground places
 - Jump-lengths are shorter and have higher frequency when indoor

Innía

Related work

- Most of context identification algorithms rely on rich sensed features
- However, publicly available crowd-sensed datasets lack data from many sensors available on a device

	Features used	SOTA Algorithms use
In/out-Pocket	Light Intensity, Proximity distance, Noise level, Acceleration	Conditional checks, temporal smoothening, GMM, SVM, Variance, FFT
Under/over-ground	Pressure	Moving average
In/out-door	Light intensity, Magnetic strength, WiFi RSSI, Proximity distance, RSSI level, Time, Mobility Activity, Acceleration, Altitude, S/N Ratio, Direction, # turns when moving	HMM, CIMAP, semi-Markov CRF, conditional checks, KNN, modified GPS info. detection, SVM, sliding window

• How contexts such as in/out-pocket, under/over-ground, in/out-door can be identified in feature limited datasets that are collected in the wild?

Our Proposal: Context Identification

- Based on available features in a dataset
- Rule based
- Unsupervised binary classifiers
- Heuristics
- Simple and effective

underground = False
if altitude >= 0 then
 underground = False
else if altitude < 0 then
 underground = True
else
also valid in case when altitude is
not given;
if distance(point, underground station)< \tau^{u0} then
 underground = True
end</pre>

end

Noise

Monday, February 12

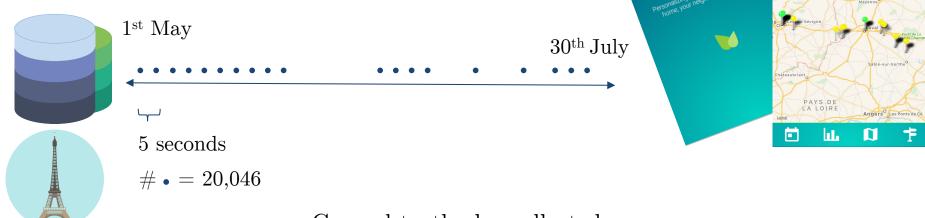
Air - NO2

Ambiciti

Ambiciti

Evaluation: Dataset

• Sparse dataset with features: GPS information, Activity Mode, Network connection type, Proximity, Collection mode



- Ground truth also collected
- 4838 in-pocket, 3310 underground, and 5672 indoor points.
- Use Paris metro³ dataset to identify underground points

² http://www.ambiciti.io

 $^{3}\ https://github.com/ragarwa2/metroStations/tree/master/IledeFrance$

Evaluation: Comparison

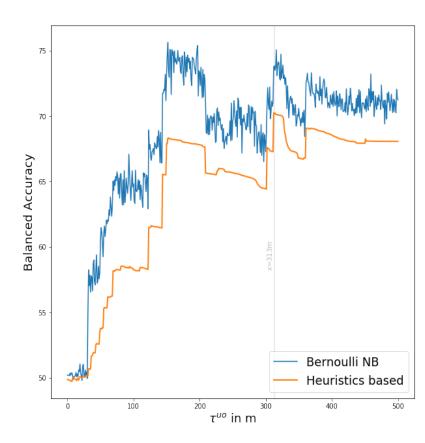
- Trained on 80% dataset
- Identify Balanced Accuracy, Precision, Recall and F1 score

¹ R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, "Evaluation of a tree-based pipeline optimization tool for automating data science," in Proceedings of the Genetic and Evolutionary Computation Conference 2016, ser. GECCO '16. New York, NY, USA: ACM, 2016, pp. 485–492

Results

- Best balanced accuracy for underground context is achieved when $\tau^{uo} = 313$ m.
- In/out-pocket achieves equivalent performance, under/over-ground and in/out-door achieve balanced accuracy 4.3% and 1%, respectively, lower

	${ m In/out-} { m pocket}$	Under/over- ground	In/out- door
Memory	0 kB	4 kB	0 kB
Time	0.08 sec	0.17 sec	0.003 sec



- Con:
 - Heuristics based on assumptions
 - Feature limited

Conclusion and Future work

- Conclusion
 - Heuristics based unsupervised binary classifiers that performs with satisfactory accuracy when compared with ML algorithm obtained by TPOT

- Future perspectives
 - Integrate our algorithms into mobile applications that target human mobility
 - Exploit additional sensor data such as, e.g., light, which can be used to improve the accuracy

rachit.agarwal@inria.fr @ragarwa2 http://rachit.gitlab.io

https://mimove.inria.fr

Icon made by Freepik from www.flaticon.com

DATA COLLECTED AND ALGORITHM USED BY RELATED STUDIES

Related study

]	Data coll	ection			
Related study	Uses	# of devices/users	Duration	Other details	Reported accuracy in %	Power, energy, Battery duration, CPU consumption	
[14]	Conditional checks	no	o training	needed	>98	6mW, CPU≈0	
[20]	Variance FFT Angle	4	10m	-	>96	-	
[6]	Temporal smoothening GMM, SVM	2	14m	‡	≈80	-	
[7]	moving avg.	2	3d	20+19+	>55.6†	-	
[12]	HMM	3	30d	19+	>82	>7.2hr	
[19]	HMM, SVM, sliding window	-	1d	-	≈75	5.7mAh	
[21]	SVM	19	169m	-	>86* >96	-	
[17]	KNN	1	-	-	97.27	-	
[18]	modified GPS info. detection	1	-	$79^+, 2595^p$	85.6	143.1mW	
[15]	semi-Markov CRF	3	env. d	ependent	96	>13.7hr	
[13]	CIMAP	1	-	-	>98	4mW	
[16]	conditional checks	no	o training	needed	>92	-	

d: days, m: minutes, s: seconds, *: baseline, +: trajectories, p: points in diverse environment, \ddagger : 116k samples (50% used in training), \ddagger : for different cities and cases different accuracies are reported.

In/out-pocket Context

- Assumptions
 - Features such as proximity and how the measurement is made are available

Under/over-ground Context

- Assumption
 - Flat terrain at sea-level for simplification
 - Places within τ^{uo} meters of underground metro stations are underground
 - Features such as altitude is available

```
underground = False
```

```
if altitude >= 0 then
```

```
underground = False
```

```
else if altitude < 0 then</pre>
```

underground = True

else

```
# also valid in case when altitude is
# not given;
```

```
if distance(point, underground station)< \tau^{uo} then
```

```
underground = True
```

```
end
```

end

In/out-door Context

- Assumption
 - Features such as connected via is available
 - If underground, the data point is deemed indoor
 - If stationary, we assume the data point is collected in indoor setting

```
indoor = False
if underground == True then
    indoor = True
else
    if activity is still or stationary then
        indoor = True
    else
        if connected via WiFi then
            indoor = True
        end
        end
    end
```


Results

	Method		Balanced Accuracy (%)	Precision		recall		F1 score	
		τ ^{uo} in m	80-20 split	in	out	in	out	in	out
In/out-Pocket	Gaussian NB ^{+,#} Our	-	$54\\54$	$0.33 \\ 0.19$	$0.78 \\ 0.89$	$\begin{array}{c} 0.19 \\ 0.19 \end{array}$	0.89 0.89	$\begin{array}{c} 0.24 \\ 0.19 \end{array}$	$0.83 \\ 0.89$
Under/over- ground	Bernauli NB ^{+,*} Our	$\begin{array}{c} 313\\ 313\end{array}$	74.5 70.2	$\begin{array}{c} 0.33\\ 0.62 \end{array}$	0.97 0.78	$\begin{array}{c} 0.81\\ 0.62\end{array}$	$\begin{array}{c} 0.68\\ 0.78\end{array}$	$\begin{array}{c} 0.46 \\ 0.62 \end{array}$	$0.79 \\ 0.78$
In/out-door	Bernauli NB ^{+,-} Our	$\begin{array}{c} 313\\ 313\end{array}$	$\begin{array}{c} 66 \\ 65 \end{array}$	$\begin{array}{c} 0.42\\ 0.62\end{array}$	$\begin{array}{c} 0.84\\ 0.68\end{array}$	$\begin{array}{c} 0.7\\ 0.62 \end{array}$	$\begin{array}{c} 0.62\\ 0.68\end{array}$	$0.53 \\ 0.62$	$\begin{array}{c} 0.71 \\ 0.68 \end{array}$

+: Best algorithm identified by TPOT, #: priors = None, var_smoothing = 10^{-9} , *: $\boldsymbol{\alpha} = 1$, binarize = 0.0, fit_prior = False, class_prior = None, -: $\boldsymbol{\alpha} = 0.001$, binarize = 0.0, class_prior = None, fit_prior = False

